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By Werner Rheinboldt
SUMMARY

Almost all solutions, so far known, of the problem of exact cal-
culation of the velocity distribution in a boundary layer under the
influence of continuous suction pertain to the class of "similar"” solu-
tions. One deals, therefore, with individual particular integrals of
the boundary-layer equations under special boundary conditions. Com-
pilations may be found, for instance, in H. Schlichting [l] or E. J.
Watson [2].

If one disregards the reports using the so-called Pohlhausen methods,
thus not yielding rigorous solutions of the boundary-layer equations,
there exist only very few investigations which deal with the suction
boundary layer for arbitrarily prescribable boundary conditions. Here
belongs, for instance, the paper by R. Iglisch [5] which treats the onset
of the boundary-layer flow on a flat plate in longitudinal flow with
homogeneous suction. On the other hand, the case of merely piecewvise
suction for otherwise impermeable wall - which is of extreme interest
for practical cases - has so far not been rigorocusly investigated. The
main reason probably is that at the beginning and at the end of every
suction regicn the value of the v wvelocity component at the wall becomes
discontinuous so that all customary calculation methods fail there.

In the present report, we shall develop a method, on the example
of a jumplike start of suction for arbitrary external pressure distribu-
tion and arbitrary suction law - a method which permits the exact calcu-
lation of the rapid variations of the velocity distribution (according

*"Zur Berechnung stationdrer Grenzschichten bei kontinuierlicher
Absaugung mit unstetig veranderlicher Absaugegeschwindigkeit." Inaugural
dissertation for obtaining the degree of Doctor of the Faculty of Natural
Sciences and Mathematics of the Albert-Ludwigs-University at Freiburg
im Breisgau, 1955.



to boundary-layer theory) near arbitrary flow discontinuities of the
kind mentioned. It is assumed that one deals with a laminar, two-
dimensional, steady boundary layer of an incompressible fluid. Farther
downstream where the variations of the velocity in the direction of the
main flow are no longer so large, one may again use one of the custom-
ary continuaticn methods.

The method used consists, essentially, in setting up a series expan-
sion for the stream function, after an appropriate transformation of
variables. For larger distances from the wall, an asymptotic expansion
is then conmnected to that series which is usable only in the proximity
of the wall.

The theory of the method is contained in chapters 2 to 5. 1In chap-
ter 6, all formulas necessary for the practical application are com-
piled. 1In chapter 7 there follow a few examples showing the usefulness
of the method.

The present report was suggested by Professor Dr. Gortler. I want
to express to Professor GOrtler my deep gratitude for many fruitful
discussions and for his great interest in the progress of the work.
Also, I should like to thank Miss Herlinde Kompe for her help in the
performance of the numerical calculations.

1. STATEMENT OF THE PROBLEM

If a fluid with flight friction (laminar) flows around a body, the
flow may be regarded as frictionless, outside a zone near the wall -
the boundary layer. For calculation of the velocity distribution within
the boundary layer, the Navier-Stokes equations may be replaced by the
simpler boundary-layer equations, according to Prandtl [A]. For the
case of two-dimensional steady flow of incompressible fluids, these
equations read

~
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where
X signifies the arc length of the wall in the direction of

the flow
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y the perpendicular distance from the wall
u = u(x,y) the velocity component in the x-direction
v = v(x,y) the velocity component in the y-direction
0 the density (constant)

v the kinematic viscosity (constant)

The pressure p(x) can be determined from the frictionless outer flow
to be regarded as known.d If ue(x) denotes the longitudinal velocity
at the edge of the boundary layer, there applies in an approximation
according to boundary-layer theory

-% %E = Up(x) Egﬁéil (2)
If the boundary layer is now sucked off entirely or partly through

the wall of the body, the boundary-layer approximations performed in the

Navier-Stokes equations are known to remain justified as long as the ratio

of the speed of suction to the outer flow Uo(x) 1is sufficiently small.

If, however, this ratio becomes too large, a dependence of the boundary-

layer pressure p on the transverse coordinate y appears. This is

the so-called sink effect. For what follows, we shall alvays assume the

speed of suction to be so small that the boundary-layer equations (1)

and the pressure equation (2) remain valid.

Various boundary conditions are now added to the boundary-layer
equations. Due to the adherence of the fluid to the wall, there is,
first of all

u(x,0) =0 (3)

Furthermore, the transition of the boundary-layer flow u(x,y) to the
outer flow um(x) is regulated by the requirement

lim u(X)Y) = uoo(x) (u)

y o
Finally, for continuous suction

v(x,0) = -Vo(x) (5)

1in practice, this is done mostly by measurement of the pressure.



is valid where VO(X) represents the suction distribution (vo(x) >0

suction, vo(x) < 0 Dblowing off).2 Especially for vo(x) = 0, thus

v(x,0) =0 (6)
(5) gives the case of the impermeable wall.

As shown in the comprehensive report of H. G. Lew - R. D. Mathieu [5],
in almost all (rigorous) theoretical investigations concerning continu-
ous boundary-layer suction up till now the restrictive assumption was
made that suction prevails everywhere along the body in the flow, and
that the suction distribution vo(x) is continucus. On the other hand,

the more comprehensive case is of considerably higher practical interest
where the wall is piecewise alternately impermeable as well as porous;
thus the function Vo(x) identically disappears within certain x -inter-
vals and becomes discontinuous at the beginning and end of every region
of suction in general. For instance, most experimental reports dealing
with this field use such more general suction distributions. Compare

for instance, the reports of Sir Jones [6], W. Pfenninger [7], and A. v.
Doenhoff - L. K. Loftin [8]. ’

In the present report we shall treat the exact calculation of the
boundary-layer flow for such suction distributions which are discontinu-
ous in places. We may limit ourselves to the special case that the wall,
starting from its beginning (x = 0} is impermeable at first, until the
continuous suction begins abruptly at an arbitrary point x = X0 > 0.

Accordingly, we have to use, in addition to (3) and (4), as a third
boundary condition

(O for O § x < X0

v(x,0) = (1)

l-vo(x) for xg S x (vo(xo) £ O)J

We shall see later that, with the aid of the method developed for the
solution of this case, the problem of an abrupt stopping of suction also
can be sclved, likewise any arbitrary discontinuous variation of the
suction distribution vo(x), so that our above restriction to the begin-

ning of suction is by no means essential.

It is well known that the three boundary conditions (3), (4), and
(7) are not sufficient to determine the boundary-layer flow for all

o

“The boundary conditions (3) and (5) together correspond to a per-
pendicular continuous suction which can be realized technically with the
aid of porous walls, made of sintered bronze, for instance.
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x 2 0 completely. For this, one rather needs, corresponding to the
parsbolic character of the boundary-layer equations, in addition, an
initial condition for u(O,y) in x = 0.

In the interval O S x § X5, our initial boundary-value problem

defined by the equations (l), (2), and the secondary conditions (5), (M),
(7) as well as by the initial condition u(0O,y) represents precisely
the usual boundary-layer problem without suction. Thus, we may assume
directly, with a view to the aim of our statement of the problem, that
in this range the desired solution has already been calculated with the
aid of the known methods, for instance, the Blasius series or one of
the customary continuation methods. Then we know also, at the point

X = X, the velocity distribution u(xg,y) = U(y). This function Ay)
represents, because of the boundary condition (7), the end profile of
the boundary layer without suction and contains the entire previous
history of the flow up to the point x = xg5. For the further calcula-

tion of the boundary layer in the region x 2 Xq, One may now use,

instead of the initial condition for u(O,y), simply
u(xg,y) = uly) (8)
as a new initial condition.

With the aid of the entrance profile ﬁ(y), there follows from the
boundary-layer equations (1) and (2)

WU+ VU= UV VU S —u° ii(%) = U, vy (9)

Sy
thus
V(xgry) = F(y) = -afy r 3+ wlohu ol o (10)
0 (A(y))
and, as may be easily confirmed
v(xg,0) = ¥(0) =0 (11)

is valid. The discontinuity caused by the jump-type start of suction
lies therefore at the point x = x5, y =0 at the transition from the

boundary v values v(x,0) = —vo(x) to y = 0 and of the initial
v values v(xg,y) = v(y) to x = xg5.



We want to remark here briefly that the initial condition (8) and
the outer boundary condition (4) are by no means independent of one
ancther. As the author has shown in another report [9], there applies
for every two-dimensional, steady, and incompressible boundary-layer
problem the following thecrem, independently of the form of the inner
boundary conditions under certain assumptions not restrictive for the
present case. If at any point x = x; an initial condition fitting

the problem u(xl,y) = U(y) has been set up and the occurring entrance
profile H(y) correctly adjoins the outer flow u.(x) - that is,

lim U(y) = ue(xy) - the outer boundary condition (4) has already been
y
automatically satisfied in an interval Xy < x< X .

It is expedient for what follows to write the boundary-layer equa-
tions in dimensionless form. If L signifies a characteristic length,
U a characteristic velocity, and Re = %%_ the pertaining Reynolds num-

ber, we put

]
x¥* = % u* = % U® = %? 0¥ = %
(12)
Y S A *x _ v __p
y*¥ =< fﬁg v* = Z Re vo* = =Y Re p* = —=—
L [§) U pUa |

Since only this coordinate system is being used below, up to chapter 7,
we may omit there the asterisks without having tc be afraid of confusion.

The boundary-layer equations (1), (2) read, with use of these new
quantities

w Sy oy U Ugllee' + 9—%
> g KA (13)
QE + Y o
ox Oy
and the boundary conditions become
u(x,0) =0 v(x,0) = -vo(x) (x 2 xo) (1ka)
lim u(x,y) = u (x) (14b)

y -

u(xg,y) = Uy) (1ke)



In the present report, we intend to develop a method which permits
rigorous calculation of the rapid variations in the velocity distribu-
tion in the boundary layer, in the proximity of the flow discontinuity.
Farther downstream from the point X = Xq, where the changes in the veloc-

ity distribution are no longer as large, we may use again one of the cus-
tomary step-by-step methods like, for instance, the difference method
developed by H. Girtler [l@. A slight improvement of this difference
method by GOrtler, which proved very good in such calculations with suc-
tion, is described in the appendix.

Finally, it must be remarked that the jump of the boundary v-values
at the point x =Xg, ¥ = 0 is propagated into the flow along the char-
acteristics x = X5, ¥ > 0 as a discontinuity of certain higher deriva-
tives of the sclution. We shall not discuss this fact in more detail
since it is not necessary for our further considerations. Its qualita-
tive correctness is confirmed, for instance, by the results of our exam-
ples. (Cf., for instance, also Courant-Hilbert [ll], vol. II, p. 299.)
The real physical flow has, of course, no such discontinuity on x = Xj.
One deals here solely with a local degeneration phenomenon of mathemati-
cal type which is caused by the boundary-layer approximations. Actu-
ally - in agreement with the elliptical character of the complete Navier-
Stokes equations - no discontinuous jump takes place on X = Xg but a

continuous, though rapid, transition.
2. STATEMENT OF THE NEW METHOD OF SOLUTION

For the initial boundary-value problem defined by the equations (13)
and (14), we shall assume below that the three given functions Ay),
um(x), and vo(x) are analytical, thus may be represented by uniformly

convergent power series

w p)
Ay) - Z a " (15)
n=1
u (x) = j{j uy(x - Xo)n (16)
n=0
vo(x) = E: Vn(x - Xo)n (VO £ 0) (17)
n=0

Note that w(0) = O, because of u(x,0) = 0.



R. Iglisch [3] eliminated a difficulty in the calculation of the
approach flow - similar to the discontinuity of the boundary v-vlaues
at the point x = x5, y =0 (ef. chapter 1) - at the leading edge of
the plane plate in longitudinal flow with homogeneous suction. He maps,
essentially, the straight line x = 0, thus the carrier of the flow
discontinuity, into the infinitely distant point X = 0, ¥ = «, with
the aid of a coordinate transformation of the form X = x, 7 = —,

It suggests the use of a similar procedure here. However, we shall
see that in our case a transformation of the same kind is not suffi-
cient, and we use therefore directly the more general transformation

-

g = {yx - Xo

re—Y (18)
N\N/x - XO

¥(6,y) = " £(a,)

4
which was applied first by S. Goldstein [121 in the calculation of the
wake behind the plane plate. N 1is an integer still to be defined, and
w(x,y) is the stream function of our problem for which, therefore

Wy(X;Y) = u(x,y) ﬂ!x(X,Y) = "V(X)Y) (19)

is valid. One then obtains

u=29 T (20)

and, as can be easily checked, the differential equations (13) are trans-
formed into

ot M + £ - (- 2)r 4 (v - 1f £

If we introduce the abbreviation

Co(x) = . vo(x) dx = MESE (x - Xo)n (22)
fxo zl :



as a dimensionless mass coefficient,u we obtain from (lha) and (1Lb) as
new boundary conditions

® 5
v
f(0,0) =0 £(0,0) = ot N Co(oN):: E: - +nl gin+l (23a)
n=0
and
o' fo(o,®) = uglol) = ZE: unan (23b)
N
n=0

Since in the transformation (18) the semi-infinite line x = x5, y > O

is transformed into the one (infinitely distant) point o =0, T = =,
the initial condition (1lkc), the entrance profile U(y) which is so
important for our problem, is at first completely lost.

We shall show first that for N = 2, that is, for the case of the
transformation used by Iglisch, there results no possibility of taking
the entrance profile again into consideration. For N = 2, the differ-
ential equation (21) assumes the form

B0 Ul + T + £ £ = Of £ o+ ofgf . = 0

TTT TT

and the boundary conditions (25a, 2%b) become

C (02) = v
£.(c,0) =0 £(0,0) = &~ - Z 2 gentl (24a)
g n+1
n=0
£ (g,%) = 2u(o?) = 2 z w020 (210)

uThus, the suction quantity in the interval from x5 to x, when

b is the width of the suction region traversed by the flow, amounts in
our dimensionless coordinates to

Q = bCu(x)

5Here we put tacitly f(0,0) = 0 since an additive constant is
unessential in the stream function.
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In spite of the lacking initial condition, the solution f(o,T) of
(Qha/b) is fully determined in the neighborhood of o = 0. If one states
for it a power-series expression

o«

£(o,T) = £ (1) (25)
) =0

there result for the coefficients f (1) in every case differential

equations of the third order with boundary conditions for f(O), f‘(O),
and for f'(w). It can be proved - which we shall not do, however -
that thereby all f (1) are completely determined. For fO(T), for

instance, the differential equation reads
" "o

fo + fofo =0
and the boundary conditions have the form

fO(O) = fo'(O) =0 fo'(w) = const

fO(T) is therefore exactly equal to Blasius' plate profile. Thus, the
lacking initial condition must be necessarily

£(0,7) = fO(T)

and one can now calculate f(o,T) immediately, for instance - as Iglisch
did - with the aid of a numerical step-by-step method instead of by means
of the series (25). However, one understands at once that the solution
u(x,y), v(x,y) of (13) obtained from this f(o,7) by the inverse trans-
formation (18), satisfies only a constant entrance profile u(0,y) = const.
Thereby, we have merely regained Iglisch's solution, however, for arbi-
trary external pressure distribution and without the auxiliary transfor-
mations additionally used by Iglisch.

We now set N = 3. Then the differential equation (21) reads

2
1 —_
2Tou u ' + f -f S+ 2f £ -of £ +of f =0 (26)

TTT o)

and the boundary conditions (23 a/b) are transformed into

o

V.
£ (g,0) = 0 £(5,0) = 02 Co(d?) = Z n_ Sl (7a)
‘ 2 n+1
N=
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[o¢]
ot (0,) = 3un(o?) = 3 Z uy 030 (27b)
n=0
Here, f(U,T) is no longer fully determined in the neighborhood of
g = 0. If (in order to understand this) one again sets up a power-

series expression of the form (25), there results, for instance, for
fO(T) the differential equation

1 1 12
fo + fofo - fo =0

with the boundary conditions
£,(0) = £,'(0) =0

The outer boundary condition (27b), in contrast, loses its significance
and must be cancelled. Then, fO(T) is no longer uniquely determined,

however. The same is true for the other coefficients £ (7). Every-
time, one boundary condition is lacking in their differential equations
and we are free to choose it appropriately. Of course, we shall attempt,
through this choice, to take the entrance profile ﬁ(yj into account,
after all, as S. Goldstein did for the wake behind the plane plate. For

this purpose, we put temporarily o = %%, thus pass over to a T,

y-coordinate system. Then there follows from (20) and (25)
00
£r (1)
u = E: n-1 yn
leTn
n=1

Since for fixed y the limiting process x-—0 1in the T, y-coordinate
system signifies T —, (lbc) and (15) are transformed into

00 f' l(T) 00
lim }Z N A }Z any"
T 5 mlﬁ

n=1 2 n=1

this results in the case of uniform convergence of the series (which is
to be assumed)

lim 2= =3 an (n=1,2,...) (28)
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This relation may be used directly as outer boundary condition for the
£ (7). '
n

The elimination of the former outer boundary condition u(x,®) = ue(x)
is unimportant for the further calculation. As has already been stated
in section 1, this boundary condition is, under certain assumptions,
always automatically satisfied in an interval x4 <x < Xy, if only the
flow corresponds to the entrance profile A(y) - which is attained by
(28) - and if

lim U(y) = u,{xg) (29)

y oo

is valid for this entrance profile - and this, of course, must be the
case, if only because of the previous history of the flow. We shall
discuss this point in more detail in section 5.

In order to find the differential equations for the coefficients
£,(1) individually, we have to enter into the differential equation (26)

with the expressions (16) and (25). If we write abbreviately

n
by = E; (m + l)um+lun-m (30)
m=0
thus -
uu,' = E: pn03n (31)
n=0

there results after comparison of the coefficients

" "o 1P -
£+ 2f% £y 0
£." o+ 28 fy" - (0w 2)F " + (n+ 2)f5"f, = F (7) (n=1,2,...)
(%2)
with
n-1 27pJ for n=3j+1
F (1) = }Z En1+ 1)f 'f! - (m+ 2)f £" } -
n 1 m n-m mn= 0 otherwise
m=

(%3)
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This infinite system of ordinary differential equations may be solved
by recurrence methods.

As boundary conditions, we obtain from (27a) and (28) for n = 0,
l) 2)

v for n=3%j+1
£ (0) = (3ka)

n
0 otherwise

fa'(0) =0 (34D)

.f_‘n_'.E.l)_ = 5n+2 a

— ol (3le)

1lim
T— o T

The first equation (32) may be integrated immediately. One finds
as the solution to the boundary conditions (34)

1 (35)

If cne introduces this into the other equations (32), it is expedient
to choose at the same time as a new variable

1 =\9’9al T £.(1) = gy(n) (n=1,2,...) (36)

Thus, we obtain for n =1, 2 . . . the sequence of linear differential
equations

g," +n%," - (n+2)ng ' + (n+2)g, =G(n) (37)
with

n-1 27pJ for n=3%j+1
() = 5= (m+ Ve, 's) o, - (m+ 2)g.gl
G (n) = E: [m.+ g, '8hy - M+ gmg'_:} -
. v 9ay = - Ao 0 otherwise

(38)
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and the boundary conditions

v'j for n=3j+1

g,(0) = (398)

0 otherwise

g,'(0) =0 (39b)
"(n) n+2
lim oD Tll = 33 8,1 (39¢)
n o T]I’H- \/9al "
13
g
3, ON THE SOLUTIONS OF THE HOMOGENEOUS EQUATIONS (37) =
It is important for what follows, to know the full diversity of
solutions of the homogeneous equations
g," + qggn" -nln+ 2)g "+ (n + 2)g, =0 (n=1,2,...) (40)
pertaining to the differential equations (57), and also to be able to
master the asymptotic behavior of these solutions for large 1.
One sees Immediately that g, =1 always must be a solution of (40).
Thus, (40) may be reduced, by the expression
g, = nfén(n) dn
to the differential equation of the second order
n g (n) + (3 + 228, (n) - n %G, (n) =0 (41)
for a new desired function g,(n). Equation (41), in turn, is transformed
into the differential equation of the confluent hypergecmetrical functions
e w'(e) + (b - g)w'(e) -aw(e) =0 (42)
if one puts )
3
n w=z _n _5
= - =g, and a = -=, b =2 -
g 5 ) n 3} 3



If, therefore, w(t) is a solution of (42) with a = -%, b = £, the

3
equation g,(n) = W'<-%;> represents a solution of (L1).

The differential equation (42) is known to have the two linearly
independent solutions.

N (a)n En

(b)y n!
n=0

Wl(g) lFl(a)byé) =

wg(g) = gl‘blFl(a -b+1; 2 -Db; &)

where for the sake of brevity we wrote (a), =ala + 1) . . . (a + n - 1),
(a)o = 1. Thereby

p)
s o fn(3 3 -5
3
1'Ln( ) = T\fn 21F1<"rl ; 2: ']5_-: '%‘) dn (43)

i

- n+2 1 5
l+ﬂfﬂ21Fl<- 3:3:‘%‘>‘ldﬂ

are two solutions of (40). These solutions are both fully analytical
functions of n. In hn(q) this can be seen immediately since

lFl(a,b,é) is known to have this property. For k. (n) it follows from

the second representation since here also the integrand is fully analyt-
ical. Moreover, 1, h (n), k,(n), the three solutions obtained, are

linearly independent of (40). This results immediately from the fact
that the power-series expansion of hn(n) has the form

[o+]

_ n{n - 3) ... (n - 3(m - 1)) ﬂ3m+2 LY
Pn(n) }; 5:8-11 ... (5 + 3(m - 1)) 3"n1(3m + 1) (1)

m=0
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thus begins with ng whereas that of kn(ﬂ) starts with 1, as may
easily be checked.

In order to find the asymptotic expansions of the functions hn(q)
and kn(q), one will first try to introduce for 1F1 the well-known
asymptotic expansion into (43) and then to integrate. In this manner,
however, the constant terms of the desired expansions remain undeter-
mined. Thus, we must choose another procedure. For this purpose, we
shall represent the functions hy,(n) and k,(n) first by certain inte-
grals of the Mellin type which - as we shall see - may then be evaluated
as desired.

As one may confirm, for instance, from the formulas given by
E. Whittaker and G. N. Watson [li], the representation

a _ P(b) _l_ el F(Z)P(a -~ z) -Z 2
lFl( )byg) = I‘(a) Py LMi r‘(b ~ Z) é d ().4,5)

1s valid for the confluent hypergeometrical function for RE¢ > O and
arbiltrary a, b which are not negative integers. The path of integra-

tion must separate the two pole chains stemming from I'(z) and I'(a - z);

then the interval also converges uniformly. If one introduces this into
(43) and interchanges the sequence of the integrations which is evidently
permissible, one obtains the representations

} r 2 1 +ooi F(z)r<_ % - z> n-52+l ]
h,(n) = P<_ §> o f_mi r(% _ z) 5-2(_52 0 dz
AR ¢ / R s el SRR : .
n\V = ' z
P(’ ’r%g') o F@ - ) 3 (<32 + 1) J

In order to derive from this the desired asymptotic expansions, the
integrals are first calculated over a path W situated entirely in a
finite domain. Their values can then be estimated when W makes piece-
wise the transition to infinity. The path W is to have, in the plane
of 2z = {+ 19, the form drawn in the figure. * denotes poles of TI'(z),
n+ 2

3

O poles of T (—% - z) or P(— - z), respectively. The point M

6
This method is frequently used in the theory of the hypergeometri-
cal functions.

-
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is to have for the first integral the value - L m+ X and for the

second the value - D+ cym+ X(m=2,3, .. .), with a suitable real

number X between zero and one.

&
+1®

Wi

The integrals (46), extended over W, may be immediately calculated
according to the residue theorem: Inside W Dboth integrands for Rn > 0
are certainly regular, except for the poles in

n n n 1
- g, -g +1, ..., ==+ m and g (m=2,3,..; i:l,E,..)
or
n + 2’ _n+2 + 1, , - n+ 2 +m and -
b) 5 3
respectively.

For n# 3j -1 (Jj natural number), the pole at 1/3 and -1/3 is
different from the others and, like them, of the first order. Thus,
one obtains in this case according to the residue theorem

5 n 2 = (-3),{- 1/3 n
,,_ng)_; f rar(-3-2) O .. r(3) z g (-a428) e, 5/r(2)r<_ + 1
w

5
r(-§) ™ M-z) 5oz “br“* L vrrem r(-3)

or
rk r(z)r(-242 . -3z+1 r{3) s (-242) (- % ir(-242
" &52\ 1 f : ( 3 z) n az = \3 Z ( > )v( 3 AV +2-3v _F \)P . (4Ba)
W

(L 37%(-32 + 1) otz vi{n+ 1 -3v) /3. ne+ 2y
Fki z) : 5 3 I‘( ) )

370Gyt
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In the case n = 3j - 1, the pole at -2 + j |or _n.; 2, j

coincides with the pole at 1{5 (or -1/3). Thereby, the term with ‘v = j
disappears in (47a) and (48a), and the additional term changes in (47a)

into
r(2 r(z)r (—Q - Z)ﬂ_5z+l
3 3
JG/ER EEEEREE

and in (48a) correspondingly into

v

3 ar _ | —_/7 0\
—7}51/51“ (-i ) j)F(J ) [ln T‘? + y(3 + 1) - W(%) - w(—%—ﬂ (48b)
3

¥ here denotes the logarithmical derivative of the gamma function.

For abbreviation, we shall designate the expan81on on the right side
£ (47a) yhich was broken off et v =m by hn and on the right

side of (48a) by kn n(n); the changes (47b) and (&Bb) will, of course,

be taken into con51derat10n for n =33} - 1. Our assertion then is that
hn 00(n) and kn w(n in a sector of the form
bl

Q R

Ry >0 Iarg n] < % - € (¢ >0 small)

are precisely the desired asymptotic expansions of h (n) and k,(7)

for 7 —» o, Since the proof for this is completely analogous for both
functions, we limit ourselves to carrying it out for hn(q) only.

First, one may split up the integral on the left side of (47a) in
the following manner:

f f+1® f —+m+X+1@ f - %+mx+i® f- %+m +X-1i0
-%%ﬂ&X-i@ i®

(1) (11) (111) (V)
(49)

r LaAav
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We shall show that the two integrals (II) and (IV) for © — «» disappear
for constant m and any 1n from the sector Q. If we denote, abbre-
viately, the integrand by 1I(z,7), thus

P(Z)F(— % - 5)7 n-52+l

Hem) - r@ - z) 3%(-3z + 1)

we obtain, with use of Stirling's formula

NP\

(z-%)ln z _, (-%-

- (-3z+1)1n
I(z,n) = Jon e e ‘e )ln( 2, -2 e N e“(z)

> (-3z + 1)

with lim u(z) = 0, therefore
2| - =

o] - o (B e e (5-3pinlel

(-3t+1)1n |+39 arg q eC In 3 Ru(z)
e e (50)
|-5z + ll
For the logarithm, one must always take the main value, that is,
|arg z| < g and 93 arg z 1is always positive. Thus, one obtains

SB_2.L e(1-1n 343 1nlnl )+ 1n|n|+Ru(z)
x4 8-3-5-3 -t [ni Inl+Bulz)

[1lzm) a7 7 e

e-|8|(|arg z|43 arg q)

with the upper sign being valid for 9 < O, the lower for 3§ > 0. Because
of larg zl-a L for ® > o on the integration sections of the integrals

(II) and (IV) &nd because of |arg | < % - ¢, one can certainly find a

®O > 0, for any constant neQ for given & > O, in such a manner that

0< 25 < |arg zl * 3 arg 7
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for all © > @O and every sign is satisfied. Furthermore, there applies

in the entire strip

0< < - % +m+ X, 3§ arbitrary
for constant neQt evidently the estimates

Vox_ -t(1-1n 343 1n n)+ 1n|n| +Bu(2)

_Ven <C
36+ 1 1

and

Thereby, one obtains

|T(z,m)] <1 x ¢ ]

and, if @O is chosen so large that
n 5 1
5| "33 2 _ 88
finally

II(z,qﬂ < const x e—6la|

For 0< < - % + m+ X and constant neQ, the integrals (II) and (1v)

thus converge toward zero, over the horizontal sections of the path W
for © — w.

Thereby, (49) becomes for © -

f f+im - %+ X410
W -1ie f- D mX-ico

>

or, if the integral values are substituted

L-401
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~

Q(Z,T]) dz (51)

r<-.§>§§ - D e

2 a .
(n) =h (n) - F<5> 1 j" - 3 Xt I

n,m

In order to show that ﬁn’m(n) is, for meQ, the asymptotic expansion
of hn(q) for n — =, we must prove that for every constant m

lim E&Jn) - ﬁn’m(ni]q—n+3m-2 -0 (52)

n—>

is valid. TFor this, we must estimate - because of (51) - the integral

n .
- =+ mtX-1c
b)

bﬁn)—ﬁmmhﬂﬂqﬁﬁ%2=nqﬁﬁhlj%%% Jﬁ-%+m%nmgu)m(h
rf-=
5

(53)

for constant m and 1 o ® (neQ). First, if we write for abbreviation

M=-Z2+m+ X
b
we obtain
J__fmim t(z,n) dz|< = f+m |6 + 19 )| as (54)
211 JMoieo ’ =21 J_» al
From (50) then follows
e(M'% -2 Pnlue 18] _g(arg(mi9)-3 are 1) Bu(is)

|z + 19,m)| = H)
|-3(M + 19) + 1]

with

H(n) - [ e-M(l_ 1n 3) |n|-5M+l
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H(n) may be put ahead of the integral, the rest may be estimated, in
analogy to the former procedure, by

N+

MoLl_nes .
II(M + iﬁ:ﬂ)l < H(q)C|M + iﬂl 2 34 |5l(|arg(M+1®Lt3 arg n)

where C 1is a constant, and the upper sign applies again for 9§ < O,
lower for 9 > 0. We now split up the integral (5&) into

M+ie e
= f t(z,n) dz Egc—ﬁH(n) f 0 £*(9,7) as +

oni M=1 o0 -0

+6 0
f 0 ¢ (9,n) as + f ¢*(9,n) ds
g 2

(55)

with
1 n+5
M__— .
T*(0,m) = |m+ 9| 2 Te'i’””arg(mlﬂ)l *3 arg 7)

Again because of |arg 7| < % - ¢ and ‘arg (M + iﬁﬂ - %, as above,

one must find, for 9 » w for given &> 0, a €y > O 1in such a manner
that

0< 28 < Iarg (M + iﬁ)l t 3 arg q

is valid for all Iﬁl > @O and for each sign. Thereby follows in the
same manner

=519
I*(ﬂ,n) < Ce 8|9 for |98| > ®y, m constant, neQ

that is, the two improper integrals on the right side of (55) are cer-
tainly limited. This applies, of course, also for the proper integral
and we obtain therefore from (53) altogether

lhn(n) - hn,m(n), |ﬂ|-n+5m_2 < const |n’-n+5m—l H(ﬂ) < const |n|—5X
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Thereby (52) is actually satisfied for every constant m and |n]-4 o0
with neQ, that is, as asserted before, hy, Ln) is in Q the asymp-
2

totic expansion of hn(q) for n - «.

In exactly he same manner one proves that Eﬁ °o(q) likewise repre-

)
sents the asymptotic expansion of kn(n) for n -» « with neqQ.

For later, we note that

i) 3
¥ (n) = —2L K n) 5 (¥(H) - y(x (56)
Kn, e\ 52/3F<%)2 kn, (n) + 57/5P<§> (W(5> ¢(5>>ﬂ g

as can be easily checked. This means that there exist solutions of (LO)
which for n — «» are asymptotically zero.

. SOLUTION OF THE INHOMOGENEOUS EQUATIONS FOR THE

FIRST COEFFICIENTS £, ()

(a) Function fl(T)

With use of the variables 7 = \99a17, there applies, according
to (37) and (39), for the coefficient fl(T) = gl(q) the differential

equation

12
g," + 08" - 3n g’ + 38 =3 E% (57)

under the boundary conditions

g, '(n) 8
gl(o) =Yy > O); gl’ (0) =0, 1im _1_2— =5 a_2. (58)
1
N 2o 0
A solution of the inhomogeneous equation (57) which satisfies the
first two boundary conditions (58) may be found with a polynomial expres-
sion of the third order to be .
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10" Py 3

Vo - ——%5— 1
0 2&1

Thus, the most general solution of (57) which satisfies those two
boundary conditions reads, according to section 3

a. v, + p

The constant 81 1is to be determined by the third boundary condi-
tion (58). According to (l47a), the asymptotic expansion of hl(q)

reads

r(2} 21‘@2?
hl(q) ~ T]B + L \35 F<—1->q - (60)
—_ 3 3 3
3N 3 33

thus for 1 -5 «

2
P( ) a.v. + p Il
gy(n) ~ 1o, A2 - L0 01,345 L33 p(L)y o |5 A3 - vo| (61)
1 1 ~ 13 ) 1 0
393 1 33
. . . . . gl'(ﬂ)
is valid. To determine 51, we need the asymptotic expansion of -

According to a well-known theorem,7 the formally differentiated asymp-
totic expansion of gl(n) represents the asymptotic expansion of gl'(n)

if gf(ﬂ) altogether possesses such an expansion. This is the case,
however, for from (59) there results first

a,va + p
10 0 .2 (ﬂ)

g '(n) = -3 2a; 0t

and

5 1 3
hy'(n) = f1F1<‘ -;-, .35-, - 113-> dn + anl<- > %, - 115._)

7See, for instance, K. Knopp [i@ or E. Borel [iﬂ .



25

certainly has an asymptotic expansion, according to section 3. There-
fore, it is clear that

P(%) &Y% * Po\ 2 1
O ARt

39[3 28, |

g1' (n) ~3(8

and thus

g, '(n)

P<§) 8.V~ + Pa)

z l O \

~ 35y —2L - O\ + L 51 1 éyg'p L
2 p) \5/

2
n 333 28y n

is valid. If we let 1n approach infinity n - «, we obtain, using the
third boundary condition (58)

2
P(?) 2% * P\, %o
3 (6, - -3 =
1
33 .
or
573 (2% * Po 35«
8, = 5 - + Vol = 2 B, (62)
or(2 2
(5) ' r(g)
with

2a., + p
a

1

For the numerical computation of gl(n), we need merely tabulate
the function hl(q). We shall try to attain this, first, by numerical

integration of the differential equation

hy™ + 12h" - 3qhy' + 3h) =0

1
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under the initial conditions
— — " —
hl(O) = hl'(O) = 0, hl (0) = 2

However, for this differential equation continuation methods like, for
instance, those of Adams or Runge-Kutta are, unfortunately, unstable.
The reason lies in the coefficients increasing with n which, moreover,
have different signs. In order not to lose too much accuracy, one may
therefore work only a short piece with this method, that is, one must
use as far as possible the power series (hh), thus

o -2

mn) =2 ) (-1)™" 1 (63)
(3m - 1)(3m + 1) (3m + 2)3™m!

m=0

We calculated, with the aid of (63) the function

El(ﬂ) = %

hl(ﬂ)

and its first two derivatives in the interval 0 < n <€ 2.5, with toler-
able (calculating) time. For 2.5 < n < 3.0, the “method of Adams was
used, and at 7 = 3.0 there appeared, up to 5 digits after the decimal
point, agreement with the values of the expansion (60). The tabulation
of El'(n) for 0 <7 €6.0 is given in the appendix.

For later purposes we need, furthermore, the asymptotic expansion
of the function fl(T). It results immediately from (61) as

fl(T) ~ B,,12 + B (6k)

1% 117 + B

10

with

2a_+ p
9a By = ‘—LQ/ a] 5% Bjj=-——2—20
2
2\/_ 1“( )
(b) Function fE(T)

For the coefficient gg(q) = f2(T) there follows from (37) and (39)

the differential equation
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g, +ne," - bng," + kg, = —I— <—5glgl" + Egl‘g) (65)
\3/931
with the boundary conditions
g,'(n) 33 3a
g-(0) = g,'(0) =0, 1lim 23 =\/‘ 2 (66)
now q a /3

In order to make the functions to be tabulated for the calculation
of gg(q) independent of the data of the special problem, we split up

the right side of (65) as follows:

2
/ " 2 5 " 2
V5g g+ 2g. ' ) = <_5hlhl + Ehl' > +
171 1
5/9&1 5/9&1
a v + p "
38 AL 0LL 5 _on 1?4 mng) -
L/3 2
a
1
Ey§>6 v alvo + po
YN 10 hl" + 303 Vg ————— 1 (67)
a /3 L/3
1 al

and consider, correspondingly, the differential equations

71"' + ngyl" - hqyl‘ + hyl = -Bhlhl" + 2hl'2 (68a)
-
72"' + q272" - hqyg' + h72 = -%— q3 - 2hl'n5 + 3hyn (68b)
75"' + n275" - hn73' + h73 =h" (68c)
W ke by = (684)
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in every case under the initial conditions

y(0) = 7,(0) =7,"(0) =0 (v=1,2,3,4 (69

For the equation (684) there results as the solution of this initial-
value prcoblem

L

1

7, () = = (70)
Y oh

Let 7, = 7l(n), Yo = 72(q), 75 = 75(n) be the desired solutions of

the other equations. Then

2
Sy av. .+ Dp
— 10 0
g,(n) = —=— 7, (n) + 3 8, ———— 7,(n) -
a

,zgal lu/5

N

3 3 5,V a,va + p

10 3 1°0 0N

—_——— ) +3 I3 ——m —
)

al1/5 alu/5 24

(71)

is evidently a solution of (65) with Bp(0) = g,'(0) = g,"(0) =0, and

consequently

gg(ﬂ) = -g_g('f]) + Sghg(ﬂ) (72)

represents the most general solution of (65) which satisfies the first
two boundary conditions.

In order to determine ®&,, we must again investigate the asymptotic
behavior of the solution gg(q). First, there is, according to (h?a),
(MTb) for n - ®
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\

= (2
f\/_?_r_(\ﬁ -1n 3 + y(2) —W(l) -ﬁ(ﬁrw@n Inq +

’ *(5)

“%E;P(%> ii [14 ... (n - éﬂ [(-1) 2.5 ... (30 - 7)]
() = nis™(1 - n)n?0

1

(73)

Tt is therefore necessary to obtain information on the asymptotic
behavior of 7l(q), 72(q), 75(q). For this we use an approach from
Poincar€'s theory of asymptotic series.8 If one replaces in the three
differential equations (68a-68c) the right sides every time by their

asymptotic expansions, there originate the pertaining so-called asymp-
totic differential equations

2

§2
~om ~on ~ oy ~ \ r —) 2
(Tha)

2
()
U n272n _ “ﬂ72' + u72 - %‘Q[E-F(L>ﬂ2 - jé%é— n (74b)

e >
>

(3
~om + oy v _ Y ~ + u"' _ 4
7, %Yy T, o+ Ty 1 (The)

J3

One understands now immediately that the asymptotic expansion of a

solution of (68)9 must formally satisfy the corresponding asymptotic

8See, for instance, E. Borel Djﬂ.

9

As far as such an expansion exists at all; however, we shall always
make this assumption.
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equation (74). For each of these equations one can immediately give a
particular integral, namely

2 2
M= 2
5.1 b 1 p/\p(2\n2 4 L (3% pf 1
ER I B F<5>F<5>" "8 (ﬁF<5)> (=)
2
;2 = - ) 5> * -% 3 F(—;—)ng (75b)
123
r(2)
7y = —2L (75¢)

Hence, we obtain the complete solutions of (7&) by addition of an arbi-

trary linear combination of the three solutions hy(q), ko(n), ¢ of

the pertaining homogeneous equation. These linear combinations are,

because of (56), for n — » asymptotically equal Elﬁz L)+ ¢ plus
)

a zero expansion

- N [= o 2
Cze |0ty + — + — +
1 2
m
Thus, we have obtained in
| - &m
~ - ™~ - - W _
V) + B, (n) + G B Z —y (v=1,2,3)  (76)
m=0 n

the most general asymptotic expansions which satisfy the equation (Tha-The).

Therefore, especlally the asymptotic expansions of our solutions Y1

Yo 73 of (68/69) also must have this form. Let there be, for instance

2 o
7V(T]) ~ :;v(ﬂ) + clvﬁ2,w(n) + CQVT\ + C3ve E Z % (V=l)2;3) (77)
|
m=0
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If we succeed in numerically calculating the appearing constants Cly,
there follows from (75) and (73) immediately

2
lim 71'(Tl)=2 P%> +Cll§35F%
SO P

35
' 2 3z (2
lim 72 (ﬂ) = - EEE) +c, 2 o7 2 > (78)
3 Eyg‘ 3

2

7.'(n) r —}
lim QB I oyop 2 iV
I s

Thus, with consideration of (71), (73), and the outer boundary condi-
tion (66), we obtain from (72) a simple qualifying equation for 5, the

1l

J

solution of which reads

__ 1 27F® 3 27 2 o3 Po
R R T R Lo e

a, 2a + P
. )
—QSZE-ﬁl VoC13 - 0 (79)
ar 2) > o ¥3 o 2) a1 e
¥ 3
Finally, we have to determine the comstants c¢;,. For this purpose,’
we must first calculate the functions 7V(q) up to sufficiently large 1.

As for hl(n), here again the numerical instability of the differential

equations requires working with the power series, as far as time required
for calculation permits. For the functions we tabulated

h2’(ﬂ) = % hg'(ﬂ), ;l'(ﬂ) =4 71’(“)) ;é'(ﬂ) = 572(ﬂ)) ;5‘(“) = % 75'(ﬂ)
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we used the series in all cases for 0 S q S 2.5 and passed over to
Adams' method only from n = 2.5 onward. For hs'(q) there applies,

according to (L44)

3wl

=y L N (WL kT L (By - 5) N 80
b2 (n) ;Z; (-1) 5:8:11 ... (3v - 1) (3v + 1)v!3Y (&)

For the 7,'(y) there results from the differential equations

= B\H'l T] } 4 72 - E3V+2 T\ b4 7
v=1 v=2 v=0

v W) w2 wee _ v (3) 3wl
1 - 5 - E: F3pe2 T

(81)

where the first coefficients E have the values indicated in the fol-
lowing table.

1. Coefficients of the power series of ;i‘(n).-

3y + 1 Ez 41 v+ 1 Bzl

1 0 40 + 29 684 711 26
L + 83 333 333 -9 43 + 45 458 070 28
7 - 67 460 317 -10 L6 - 42 030 747 -30
10 + 48 941 799 -11 49 + 10 678 059  -30
13 - 29 674 544 -12 52 - 45 994 712 .32
16 + 15 232 538  -13 55 + 14 900 549  -33
19 - 67 289 106 -15 58 - 42190 905 -35
22 + 25 916 779 =16 61 + 10 986 648  -36
25 - 87 786 347 -18 6k - 26 94k 258  -38
28 + 26 232 353 19 67 + 63 Okl 703  -LO
31 - 68 793 k32 21 70 - 14 189 k93 -4
3L + 15 489 kl2 22 T3 + 30 826 575 -43
37 - 27 947 829 -2k

Here, 83 333 333 -9 signifies abbreviately: 83 333 333 1077

041 .
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10%-1

33
2. Coefficients of the power series of 7é'(q).—
3v + 2 E5v+2 4“ 3v + 2 E5v+2
2 0 38 + 10 092 101 -23
5 0 L1 - 24 052 323 -25
8 + b4 642 87 -10 Ly + 535 487 992  -27
11 - 45093 795 -11 L7 - 11 149 234  -28
1L + 32 0Lk 675 -12 50 + 21 89 789 -30
17 - 18 329 982  -13 53 - 40 511 235 -32
20 + 88 663 821 -15 56 + 71 087 162  -34
23 - 37 287 360 -16 59 - 11 849 619 =35
26 + 13 891 308  -17 62 + 18 810 840 =37
29 - 46 484 s07 -19 65 - 28 503 156 -39
32 + 14 123 777  -20 68 + 41 310 4o2 41
35 - 39 306 312 -22 71 - 57 376 598  -43
3, Coefficients of the power series of 73'(q).-
3v + 2 E3v+2 v + 2 E5v+2

2 + 50 000 000 - 8 35 + 71 %04 684 -2k
5 + 25 000 000 -9 38 - 16 576 145  -25
8 - 94 246 032  -11 41 + 36 085 121 -27
11 + 45 093 795 -12 LY - 73 841 439 29
14 - 20 739 108 -13 L7 + 1k 252 289  -30
17 + 87 285 627 -15 50 - 26 026 919  -32
20 - 33 320 536 -16 53 + 45 095 094 34
23 + 11 558 ok7  -17 56 - T4 320 380 -36
26 - 36 609 952  -19 59 + 11 677 902  -37
29 + 10 648 904  -20 62 - 17 531 552 -39
32 - 28 602 324 22 65 + 25 195 265 41

We shall try to determine the coefficients Ci1y in such a manner
that the values of the functions 7v(q) and their first two derivatives

for large 1 agree with the values calculated from (77). The equa-
tions (77) represent together with the equations following from them
by single or double differentiation with respect to 1, a linear system
of equations for C1y2 Sopr and Cz for constant n = o and for
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every v =1, 2, 3., Unfortunately, however, the coefficient of ch,
namely the zero expansion, is not known numerically. But with increasing
n this coefficient decreases more and more so that it may finally be

neglected. We therefore consider now the system of equations
7{ng) = 7, (ng) + clvﬁe,m(ﬂo) t Con
7,'(ng) = 7, (ng) + Clvﬁé,w(ﬂo) + Coy
7, (ng) = 7\/"(”0) + Clvgg’m(no)

The cy, calculated from the first two equations agrees, for sufficiently
larger No» better and better with the value found from the last equa-

tion. This agreement represents evidently a measure for the damping of
the zero expansion in (77). It was attained, up to 5 digits behind the
decimal point, at qo = 3.0 for 75 and at Mg = 3.5 for 71, 72

The values

1 _
8.46731, = ¢z = 0.47041

|-
(@]
i

= -1.12150, 5cq,

n

(82)

'_J

% cpp = -0.41hOT, Sey, = -0.90750, L cyz = -0.12001

n

resulted. The tabulations of the functions hg'(q), 71'(q), 72'(q),

7 '(n) for 0O < n § 6.0 are given in the appendix.

5

For what follows we need, in addition, the asymptotic expansion of
the function fz(T). It is obtained after an easy calculation if the

asymptotic expansions (47 a/b) and (77) of hg(q) and 7V(n) (v =1,

2, 3) are substituted into (75) and we then pass over to the former
variable T. There results

2 B, -m
4 21
fg(T) ~ B2uT + B T + B oT In T + Bng + BEO + E; ——:ET——— (83)

m=1

T.-u01
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6 _2 s 32(2a2 + po)

a
1 2
a3

Gn a; + In 3 + E(E) - E(%\ - E(%)) -

\xa
((‘33)

S ¥z P[ea. + p |
0.41497 2 v [: 2a 4 Vol -
1

(¢) Remarks on the Function fB(T)

For the coefficient ga(n) = f5(7) there follows from (37) and (39)
the differential equation

1
LY sunm

e "

3

g," +nfez" - Sngs' + 5es = (—hgggl +58,'8," - Bglg2"> (84)
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with the boundary conditions

g, '(n) | a
g,(0) = g,'(0) = 0 lim 2 — - 5/3 %y
n-o® 1 315/5

(85)

If one wants to reduce the calculation of g (q) again to certain uni-

versal functions, one has to split up the right side of (8&), for
instance, in the following manner

(‘ugggl" + 582'gl' - 5glggn> = —r [%51251Kl(ﬂ) +
(9al>2/3

1

951512K2(ﬂ) - 951V06lK5(ﬂ) + 3 B 9al 62B1K4(n) - % 51V0B1K5(n) +
51Kg(n) + 36,78 K (n) + 38, %vKa(n) + 4-3/%; 818,Kg(n) -
381 7VoK1o(n) = 981vB Ky (n) - 981K p(n) -

3.0/ 981 voBoKis(n) + % VOEBlth(ﬁﬂ

wherce 81 and 62 denote the expressions (62) and (79),
&1V0 * Po
B = ———

81

and, finally, the 1k functions K (n) have the form

Ky(n) =7,"° - 57,'1° + & (v=1,2,3) (87a)

= h2"n3 - 5h2'n + 8h2ﬂ (871)

=
=
~~
=
g
|

hl"ﬂu - 5hl'ﬂ3 + 9hlﬂ2 (870)

=
N
~~
=3
N’
1

.40l
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K,(n) = -by hy" + 57,'hy" - 37"y (v=6,7,8)  (874d)
K9(n) = -uhghl" + Sh,'hy' - 3h2"hl (87e)
K,(n) =7 (v=10,11,12)  (87f)
SPCUESN (87g)
K, (n) = 360" (87n)

Thereby, we have split up (84) into the 14 universal differential
equations

® LU nanvn _ 5ﬂ®v' + 5DV - Kv(n) (v=1,2,...,lh) (88)

v
which have first to be considered under the initial conditions

0,(0) =w,'(0) =w,"(0) =0 (89)

The number of these differential equations may be slightly reduced:
In (86), X; and Kg, also Kz, Ks, and K,;, snd furthermore Kg and

Kio have the same coefficient, except for one constant numerical factor;

that is, one may combine the corresponding differential equations. We
did not do this only for reasons of symmetry.

The last equation (88) has as the solution to the initial condi-

tions (89)
w), = 129°

Calculation of the remaining 13 functions wv(n) will be possible only

by numerical integration of the differential equations (88) which would
probably be somewhat troublesome, again because of the numerical insta-
bility of these equations. However, if one then combines the wv(n)

into a function E3(q) in the same manner as had been done with the
Ky(n) in (86), E5(n) evidently represents an integral of (84) for
which

gg(o) = 2'(0) = ge?(o) =0

is valid. We have therefore as the most general solution of (84) which
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satisfies the first two boundary conditions (85)

The still free constant 65 is again to be determined from the remaining

outer boundary condition. For this burpose, one has to find, exactly
as for gg(q), the asymptotic expansions of the universal functions

wv(n). However, we shall not carry this out here.

5. ASYMPTOTIC EXPANSION OF THE STREAM FUNCTION

Our method for solving the boundary-layer problem (15), (14) used
so far consisted in expanding the stream function in dependence on the
variables

y
g = \?x - Xy, T = —
3€ﬁ?77§5

into a power series

o0

W(x,y) = °f(o,7) = Y £ (7)o™2 (90)
2

For any constant T, the range of convergence of this series will be an

interval 0 < o0 < Gl(T). For T - o, certainly Ol(T) = O(%) will be valid.
On the one hand, the fy (1) tend toward infinity like ™% on the basis
of the boundary condition (34c). On the other hand, with the simultaneous
limiting process o- 0, T - oo, (90) is transformed vith o1 = % = constant

into the power series of the entrance profile U(y) which is convergent,
according to assumption. Hence, there follows altogether that the series
(90), for retained small ¢, is usable solely for small 1 (that is,
therefore, small y). As is frequently necessary in boundary-layer theory,
we require for calculation of the stream function for large y an asymp-
totic expansion of .

In order to obtain a clue for this, we shall investigate the behavior
of (90) in the limiting process 0 0, T- », o7 = constant, as far
as this limiting process takes place in the range of convergence. Since,
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therefore, 7, in particular, is to tend toward infinity, t1- =, we
may - as is usual in the theory of asymptotic series - substitute for
the functions fp(7) in (90) their asymptotic expansions. This gives,
according to (64) and (83), the beginning to the asymptotic series

2 .9 2.2 3 3 4 L 2
o f(a,T) 581071+ 0 Byz7” + BT + B + 0 (B2uT + BT +

= -2
B21T+ B22T In v + B20+ B2’_'2’T' + ...) 4+ ceees (91)

which is valid for the limiting process o¢— 0, 7T-— ®©, 0T = constant
(as long as (90) converges). In order to arrive at the stream function
v(x,y), one must introduce the x, y or, simpler, the g, y-coordinate
system. This is done by the substitution T = %% and the following

rearrangement according to o-terms (which is always permissible for
asymptotic series)

-

a B B

B B B
02(—£l y + 22 y2 + ...> + o3 in c{--—%g y + ...) +

\ 3 9
5(n. 4 P22 1(s. -5
G (Blo + 5 ylny + 3 (B21 B,, 1n B)y + ... +
ou<BQO + ...) b oeennn (92)

Thereby, the limiting process 0 — 0, T- ®», oT = constant has become
the simple limiting process 0 - 0 for constant y. We have already
made use of this, inversely, in the derivation of the boundary condi-
tion (3hc). (92) therefore represents an asymptotic expansion of V(a,y)
for o- 0 for constant (larger) y 10 of the generalized form

o K
Vo~ ZZ }J SkZ(Y)Gk 1n%-lg (93)
k=0 1=0

lOFor small y, the series (92), corresponding to its derivation,
is of course no longer valid, that is, it does not satisfy the two inner
boundary conditions (12a), either.
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As will be shown in the appendix to this report, it is permissible to
use such series in calculating exactly like ordinary asymptotic expan-
sions, if one only uses for them the definition

lim [- “(Sw* 5100 In o + ... SMNUM lnM"Nc> 1 =0 (94)
g—- 0 M M-N

o 1 o}
- with arbitrary M and N S M, and with constant y.

We may now drop the assumption, contained in the derivation of (92)
that ¢ and y may vary only within the range of convergence of (90).
Rather, the expansion (92) must represent everywhere where it has meaning
also the asymptotic series of the stream function V(o,y), since y(a,y)
can possess only one asymptotic series of the form (93) for g - 0, as
shown in the appendix. However, we do not know in what range (92) is
defined altogether, since for the time being we cannot make a statement
on the convergence® of the coefficient expansions. But even if we pre-
suppose this convergence for all Yy, the stream function for y of arbi-
trary magnitude can still not be actually calculated from (92): For
practical purposes, we always know only a finite number of terms of the
coefficient series of (92), since we can of course determine only a
finite number of functions £ () in (90). It is not even to be

expected that one will get far beyond the three functions fO(T), £1(7),
fE(T).

In order to be able to use (92) in the calculation of w(o,y) for
all large y, we must find another type of rule for calculation, which
1s valid for all y, for the coefficients of the o terms, instead of
the series used until now. This one can actually achieve if one takes
into consideration that (92) must satisfy the boundary-layer equations
(13). If we write, therefore, (92) abbreviately in the form

v~ soly) + 55(5)02 + 55(3)03 1n 0 + s5(y)0d + s(y)od + ... (95)

and substitute this into (13), we obtain, by comparison of the coeffi-
cients of the first four o expressions occurring, the differential
equations

(96a)

4]
O
[0
n
1
0
(@]
15}
n
I
(@)

(96b)

1
o

so’§3’ - 30"53

llThis, in turn, corresponds to an idea of S. Goldstein which he
used for the calculation of the wake behind the plane plate [12] and,
in [16], for the flow in the proximity of the separation point.
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so‘<s5‘ + % 55'> - so"<s5 + % §3> =Py + s5g" (96¢c)
sg'sy ' - SOHSA = % <s252" - 52'2> (964d)

From these, we have to calculate those solutions s,(y) which,

for small y, agree with the coefficients of (92). On the basis of the
well-known uniqueness thecrems for ordinary differential equations,
they will then be everywhere equal to these coefficients. With the
functions s,(y) found in this manner, (95) now represents the begin-

ning of the desired asymptotic series of (o,y) for ¢ — 0, since,
as mentioned above, every function can possess at most one asymptotic
expansion of the form (93).

Before carrying out the integration of (96), we should like to
make a remark: Entering into the boundary-layer equations a priori an
expression (93) for the desired asymptotic expansion of v(o,y) 1is
suggested. According to the definition (94), one must then perform,
for any two values M and N, the comparison of coefficients in the
o expressions up to oM 1nM-Ng. Thereby, one obtains a system of

2
cients s, . . . , syy- However, from this we can never draw a con-

clusion as to the asymptotic expansion (92) or (95), without knowledge
of v(o,y), thus of (90), since we do not even know what Si; &ppear

<M+l> + N+ 1 coupled ordinary differential equations for the coeffi-

at all and which disappear identically.

Now the differential equations (96) are to be integrated under the
initial conditions given by (92). Since, of course, according to our
statement of the problem, the stream function ¢ for o -» 0 must cor-
respond to the entrance profile U(y), we have, first

') = 8y = ) ey (97)

which, self-evidently, agrees with (92). Thus, there results from (96a)
SQ(Y) = 7\250'(}’) = )\23(3’) (98)
where, because of (92)

?\2=—_—
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In exactly the same manner we obtain

53(}’) = X550‘(3') = ?\BG(}’) (99)
with
_ B,
_ 22
R

The differential equation (96c) is - under the assumption so’(y) = U(y) # 0
certainly valid for vy # 0 - equivalent with

' 1 l__ - _ n l__ - "
SO <85 + 3 83 ) SO (85 + 3 85) B po + So
2
12 sa'
0 ¢}

s

whence follows immediately

yp +s'"

1l =z ' 0
S5+353=50f——0 dy

0 2

N Y p + "
u(y) f 0 gy (100)
0

~2
5 u

0

Since the general solution of the homogeneous equation (96c) as well as

53 is, according to (99), a multiple of sg' = U, we obtain, after we

have put for abbreviation

Y pg + "
I(y) = — dy
0] u
altogether
s5(y) = 7\53(y) + Uy)1(y) (101)

As may be easily checked, the beginning of the expansion of s5(y) reads

2a, + P a.(ca, + p ba 2a,(2a,_ + p
S}(y) _ .72 - 0, A8y - 2( 2 o) v + 5 _ 2( 2 o)
1 a2 a 2

y Iny +
a1

2
lEah ) 12a2§5 .3 a2 - ala5

a
2
1 ay al5

AgBiy + (2&2 + po> Yo + ...
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so that

A5 = a(225 + v5) ¢ L (B - By, 1n 3)
315 5al (

Because of (98), the differential equation (96d) may be written
in the form

B..2
s 's.' - s." g = 11 S'S'"—S"E
0 "k 0 "k 2 < 0 ~0 0
18
1
A particular integral is
2
B
SLL: llsn
18a12 0

therefore we have as a general solution

B .2
ll N~y ~
S U+ AL (103)

18a;

SM(Y) =

The constant Xu' can no longer be determined immediately from (92),
unless further coefficients F (1) 1in (90) are calculated.

Thereby it is now possible to calculate without further difficulties
the desired velocity distribution u(x,y) in a small interval Xg S x € ¥
for all y 2 0. For small y, this is done directly with the aid of the

series (90); for larger y, one has to use the asymptotic expansion (95)
resulting from it.

In the derivation of this solution u(x,y) of the boundary-layer
equations (15), we did not consider at all the outer boundary condition

u(x,») = u(x) (10k4)

As mentioned at the start, however, the author has shown in another
report [9] that, under certain assumptions, this boundary condition

is always automatically satisfied in an interval Xg < x § Xy, if only

the entrance profile ﬁ(y) correctly adjoins the external flow:

u(xg,») = U(e) = u,(xg) (105)



We shall here not further concern ourselves with the exact presup-
position of this theorem but shall simply verify that our solution
u(x,y) _ as far as we calculated it in the x-direction - for y - =
actually satisfies the outer boundary condition (104).

For large y and small g, the equation (95) is valid for u(x,y),
thus with consideration of the formulas found for the sv(y)

2
Biim L\

2 ulg + ...,

u =y, ~ T+ ?\23'0 + X;i‘qa In o +53‘(y)05+ ?\uﬁ‘ + o
1
1

(106)

For Uu(y) let us assume first, that (105) is correct. Furthermore, we
assume that o(y) with all its derivatives for y - = possesses asymp-
totic expansions.l2 If for instance

aQ Qa,

~ 1. %
Wy) ~ uelxg) + =+ =+ ...nn

® y v

one obtains from it, as is well known, the asymptotic expansions of the
derivatives by formal differentiation with respect to y. Thereby the
existence of the boundary values
'\ln
1lim u( )(y) =0 . (n=1,5,...)

yow®

also is guaranteed, and we obtain from (106) for constant o

1im u(x,y) ~ lim u(y) + ¢ lim 55‘(y) F oaennn

y - y o

= u (xg) + (x - xg) 1lim sj’(y) o (107)

y—o >

1
2This assumption is fundamental also for the general theorem. It

corresponds to the character of the boundary-layer flow which has to
make asymptotically the transition to the outer flow.
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For the boundary value remaining on the right side, one finds from (96c)

um(xo) 1im s5'(y) po + lim SO"<53 + % Sﬁ

y— yo

p.+ lim s "s 'I(y)
0" . 00

1

Py + um(xo) 1im u'I(y)
yo

The integral I(y) has, on the basis of our assumptions regarding E,
for y - « certainly an asymptotic expansion. The latter starts, as
may be easily checked, with

2a,
1(y) ~ —2—y - 1°0
U (%) e (o)

In y + powers of %

Since the expansion of U'(y) reads

one recognizes immediately that

lim Q'I(y) =0

Y - o
and accordingly

y—o ® © o\ X0
(107) becomes therefore actually

u(x,0) ~ Ue(x0) + ue'(x0)(x - x0) + ... = uw(x)

and, on the basis of the convergence of the series of um(x), the asymp-

totic sign may be replaced by an equality sign.

Thereby we have proved the validity of the outer boundary condition
(104) for the broken-off series (90) and (95) as far as they approximate
the solution u(x,y). If one includes further terms of the series, the
proof for them shows perfect analogy.
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6. COMPILATION OF THE METHOD FOR PRACTICAL APPLICATION

Qur method developed so far represents a solution of the problem
formulated in section 1: +to calculate the boundary-layer flow in the
proximity of a jumplike suction start. However, as also has been said
in section 1, the possibilities of application of the method, are thereby,
by no means exhausted. As may be confirmed immediately, we have in the
derivation of the method never made use of the assumption that the
entrance profile U(y) at the point x = x5 of the suction start is

a velocity profile of the boundary layer without suction. Accordingly,
U(y) may obviously be also a profile of a boundary layer with suction;
merely a sudden change of the suction velocity then occurs at x = xg,

or the suction ceases abruptly. In any case, our method for calculation
of the flow may be used a short distance behind the point of disconti-
nuity x = xg. In order to facilitate the practical solution of these

problems, we shall, below, once more compile all necessary formulas.

For the example to be considered, first let the outer velocity dis-
tribution be given in the form of a power series

u,(x) = }: upfx - xo) 1 (108)

of which, it is true, we require only the first coefficients Ug and u

At the point x = x. the suction velocity vo(x) is now to become dis-

0
continuous; let for instance

v(xg,0) = vg # lim  v(x,0) = ¥, (109)
X — XO-O

be valid. For the special case of sudden suction start - formerly the
only permissible one -~ for instance, Vo # o, Vb = 0; at the sudden end

of the suction, in contrast, we have vy =0, V5 # 0. We shall assume

that the calculation of the boundary layer up to the point of disconti-
nuity x = xg has already been carried out. Thereby, one then knows,
in principle, the entrance profile H(y) - unfortunately, however, in
general only numerically at the equidistant points y, = ni (n = 0,1,

2, . . .) of a fixed step interval 1. However, we need of u(y), too,
at least the beginning of the power series.

Uy) = ay + aoy° + aByB + auyu o (110)

1

TOHh-1
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In the determination of the occurring coefficients a, one must
always observe the well-known wall restrictions.

. a, = -2uu; + 2?6&1 8z = 6?/'Oa2 (111)
By them, a, and az are unequivocally coupled to &y or - for GO =0 -
fully determined; a; and aj, in contrast, remain completely undeter-
mined. a, 1is ascertained, first only approximately, for instance by
numerical or graphical differentiation of iu(y) in y = O. Hence, a,
and az may be calculated. TFor a sufficiently small ordinate y =y,
we then find a first correction of a; from the deviations of the first
three terms of (llO), compared to the value of ﬁ(yl). . Then, the coef-
ficient a), in first approximation is determined for a somewhat larger
Y = ¥p. Finally, with its aid, a second correction of ay (thus also
of a, and aB) is carried out. In general, thereafter, sufficient
accuracy is attained for a; whereas the most inaccurate coefficient a),

is only of small influence, anyhow.15

After this preliminary work, the constants which return again and
again

28, + D

ay

Py 28y + P

Bl = V, +  —_— B2 = ——
O al 8'12

may now be calculated, and with them the coefficients

.

9a, 1
Ay =
ey
AL, =1.5 3 ‘ (112a)
11 =159 By

Ay, = 3.195255 39a) & *

o

15A detailed representation of the method for determination of the
here described, for the special case vy = 0, may be found in

&n
H. Gortler [17] .
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as well as

A
2 *
Ay, = 5.104819 (51*) Ay, = 0.958576 B8,
A25 = 9*585757 Vosl* Ag)-# = 1.9 VOBl
¢ (112b)
A = 647 22 + 11.45011 (5,%)° - 16.23311 *
25 = 3T-0364T 22 + 11.45 (5,%)7 - 16.23311 B1®, " +
9.01847 vgd * - 12.34549 aB,
Hence we then obtain, with use of
\5{931 81'(T]) = "All'f]2 + Algﬁl'(ﬂ) (113a)
and
Foay &y (n) = Ay 7yt Appds' - Apsys + Agn® + Agghy' (113D)
given in the appendix, thus far a small
_ ag blreven v 02 3 ! 0'5
u(o,n) = Agn 3 + \/9al g1 '(n) 3 + [%q g5'(q) 3 + oeeenn (11k4)

The choice of o depends on the requirements of the individual examples.
In our practical test, we have admitted, at most, numerical values

o< 0.15, in order to lose as little accuracy as possible. This -
fundamentally small - step interval in the x-direction, however, brought
us in every case so far beyond the influence of the flow discontinuity
at x = X0» that a difference method became again applicable.

If one now introduces into (114) the variable
30
5/931

which can be done directly with simple linear interpolation - the desired
velocity profile u(x,y) for small y 1is obtained. How far this u(x,y)
must be calculated in the y-direction depends on the individual case.
Generally, one will use for (lll;) the tables of the universal functions
up to 5 = 4.0 or 5.0. Frequently, however, the automatic junction to

y = i
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the asymptotic expansion of u(x,y) is attained earlier. TFor y-values
beyond this junction the deterioration of the approximation formulsa (114)
becomes slowly noticeable.

For large vy, the asymptotic expansion of u(x,y) 1is now to be set
up according to section 5. For this purpose, we calculate first the con-
stants

By, = 2.057582 J/%a; 5,
- a3
B,, = 18 & - 6a B,
- 2
By, = (0.333333 1n a) + 1.595155)By, - 2.11835 (5,%) - (115)
0.86991 B181* + 1.15039 vgdy ™ L
2 + 2a_a

s 2% o & 173

Bz = 12 a " 3a Boo "‘“‘::z;‘—— Po
1

1k -
This contains, by the way, the determination of the values ¥ %),

G g) of the logarithmical derivatives of the gamma function; these values

are rarely to be found in tabular compilations. From the well-known
formulas

rt - s RIS R

one obtains, by logarithmical differentiation and substitution of x =

W

or x =1, a linear system of equations for the two unknowns V(%),
W(%) the solution of which reads

V(%):-C—E%-%lnB i?@):-c--g-lna

(C = 0.577 215 66 Euler's constant.) Correspondingly, we obtain for the
expression occurring in (73) and (83)

- 1n 3+ ¥(2) - ¥(3) - ¥(3)

-2+ 21In3%+C+
b p)

el

2.588 239 61
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Thereby the first coefficient functions of that expansion read

-~

so‘ = u(y)
1 g y)
s,' = =L U'(y
2 3a;
B, > (116)
5,0 =- 22 W (y)
53 - - —_—— y
531
l|+p N y:{"-{-P
55‘ = %Bu' + O 4 uu/\ 0 dy
3 0 ¥
J

with

As = g; (B, + 0.333333 By - 0.36620k B,,)

For evaluation of the integral appearing in s5', it is best to

split up the latter at an arbitrary but small displacement ?

where then

1(3) = -, % +0.335335 By, 1n § + Bsf + ...

and for the remaining integral now one of the known formulas of quadra-

ture, as for instance the trapezoidal rule, may be used without difficulty.

If the entrance profile U 1is given only numerically at the points
Yo =nl (n=0,1,2, . . .), the calculation of the derivatives ' and

1]

u’ will possibly cause certain difficulties. According to our experi-
ences, however, it is generally perfectly sufficient to approximate T’
and A" by so-called alternating differences of the first or second
order. If one writes abbreviately

Wy, = U, (n=0,1,...)

Vn = Unsl - Upol (n=1,2,...)

th = Vel - Vool (n=2,3,...)

L-401
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therefcre

and the equations (115) take the finite form

g ! = U
0 (yn) Uy,
B
11
s,' (yp) = v
2 Mn fa,1 B
1
B
6all
Az + I(y )
3 k 1 %, 1 1 1% 17 %
1 — — Pl 3 —_—
55(3rn)—Ln+Vn = +L+Lk+2Lk+l+ +2Ln-l+uLn
with
2
¥, L
.2 _ 1 n * _~n
Y =¥ I"n T~ \ T o + po Ly =%
Un \L41 Up

The formula for 55'(y) is valid only for n 2 2. For smaller values

of y - as far as such values are needed altogether - one uses best the
power-series expansion (102).

With the aid of the sn'(y) we now obtain immediately
u(o,y) = so‘(y) + 52'(y)02 + SB(y)o'5 ln o + SB’(Y)UB + o (118)

There ¢ 1is to be selected exactly as for (11k). These u(x,y) always
adjoin automatically and correctly the values from (114) so that we now
have the velocities u for the entire range of the y.

7. EXAMPLES

lst example: Boundary layer on a plane plate in a longitudinal flow
with constant outer velocity distribution u, for jumplike suction start
at a point x = Xxq.



We use for the introduction of the dimensionless coordinates,
according to (12), L = Xg and U = u_ as characteristic quantities.

Then the outer velocity distribution wu ¥ 15 always has the value 1

"

and the suction starts at the point x" = 1. Up to this point, the well-
known Blasius plate boundary layer could freely develop; tabulation of
its values may be found for instance in H. Schlichting [ﬂ] on p. 103.

We obtain accordingly for the inlet profile u*(y*) is x® = 1, as may
be immediately confirmed

¥ (y*) = 0.33206 y* - 0.0023%0 y*l+ + o= e

As suction law, we selected successively

vo*(x¥) = vo(x) \/umxo = 0.5, 1.0, 1.5
U, v

In each of these three cases we now used our calculation method for the
transition over the flow discontinuity at x¥ = 1, up to the point

x*¥ = 1.0015. Here the influence of the discontinuity had diminished so
far that for the further calculation the difference method described in
appendix 2 could be applied. A criterion for this applicability is the
form of the second derivative of the velocity profile with respect to y*.
Corresponding to the wall restrictions (111) u§*y* on x¥*¥ =1 becomes

discontinuous. This discontinuity is smoothed out for instance in the
manner shown in figure 1 for our example of the suction value vo* = 0.5.

The difference method works satisfactorily only when the minimum of
—u;*y* lies at least at the third or fourth grid point, without the

step interval 1 in the y*-direction being toc small.

For each of the three suction values the calculation thus began at
x*¥ = 1.0015 with the difference method. We selected as the step inter-
val in the y*-direction first 1 = 0.2 and later 1 = 0.4, whereas in
the x*-direction -~ corresponding to the slow diminishing of the influence
of the discontinuity - h increased from 0.0035 (at the first step) to O.1.

For the suction value vo* = 0.5, we performed this calculation up

to the point x* = 1.15 where - as figure 1 shows - the second deriva-
tive u§*y* had been approximately smoothed out. Figure 2 shows the

veloclty curves obtained in this manner for constant distance from the

15The dimensionless coordinates introduced according to (12) will
be provided with an asterisk, corresponding to their definition, since
the simplified notation without asterisk used so far now could give rise
to confusion with the original variables which were dimensional quantities.

TOh=T
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wall. One recognizes from it how the discontinuity of the v-boundary
values at x*¥ =1, y*¥ =0 has been propagated into the flow along the
characteristic line x* = 1.

Exactly as for VO* = 0.5, we calculated also for vo* =1.5 up to
the point x* =1.15. For VO* = 1.0, in contrast, we used the differ-

ence method up to the time where the velocity profiles within the scope
of calculating accuracy (about 1 percent) had become equal to the asymp-
totic suction profile

This occurred at x* = 2.3. Figure % shows some of the velocity profiles
obtained and figure 4 the pertaining streamline pattern. In figure L,
too, one recognizes again the discontinuity along the characteristic

line x* = 1.

The four following figures serve to illustrate the differences for
the various suction values.

For the suction value vo* = 1.5 we assumed furthermore that behind

x* = 1.15 the wall is again impermeable and that, therefore, the suction
ends suddenly at this point. For surmounting the flow discontinuity
originating thereby at x* = 1.15 we applied again our method developed
during this investigation. For the last suction profile at x* = 1.15,
the beginning of the power series

u*(1.15 y*) = 1.0430 y* - 0.7823 y*2 + 0.3%3911 y*3 - 0.00%5 y*” Foiennn

determined according to section 6, was used. For further calculation
from the point x* = 1.152 onward 08rtler's difference method was used
again, this time in the form improved by H. Witting, with the step inter-
vals 1 = 0.4 and h Dbetween 0.003 and 0.1. Figures 9 to 11 show a
few results of these calculations.

From figure 11 one recognizes that the displacement thickness is
subjected to a long-lasting reduction by the suction slot whereas for
the wall shear stress the effect of the suction rapidly ends again.

2nd example: Boundary layer on the circular cylinder with pressure \
distribution according to potential theory for sudden suction start at
a point x = X4.

Let R be the radius of the circular cylinder and Up the velocity
of the approach flow. When the dimensionless coordinates (12) are referred
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to the quantities L = g and U = Uy, the velocity distribution at the
wall according to potential theory is

*
u *¥(x*) = 2 sin %;

As the point of the suction start we selected xo* = 3.0 which corre-
sponds to a center angle ¢ = 87.38°. Up to this value x¥* = 5.0, the

boundary layer could be calculated without difficulty, with the aid of
the Blasius series. The tabulations of A. Ulrich [181 were used.

For the suction, starting jumplike at x* = 5.0, we assumed first
vo* = 0.5. For surmounting the flow discontinuity we had to use our

method developed during this study, in the region 3.0 < x f 3.002.
Behind x* = 3.002 the difference method proved again workable.

In order to shift the separation point as far rearward as possible,
it was suitable also to continuously increase, with increasing x*, the
suction value VO*. A difference method is perfectly capable of dealing

with such a continuous change of the v-boundary value vo*(x*) as long

as the variations vp*(x* + h) - vo*(x*) originating at each step of

the process assume at most numerical values up to 0.1, without a smaller-
than-usual step interval h being chosen. However, if these variations
exceed 0.1 or if, in order to prevent that, h would have to be very
small, the difference method fails rather rapidly. Then one is solely
dependent on a jumplike increase of vo*, with use of our calculation

method for surmounting the discontinuities.
Applying what has been said we now calculated the boundary layer,

beginning at x* = 3.002, with the aid of the difference method, for the
following suction law:

0.5 + (x* - 3.0) 0.75 for 3.0
1.1 + (x* - 3.8) for 3.8

The step interval in the y*-direction was 1 = 0.4, whereas h varied
at first, in the range 3.0 € x* < 3.1, between 0.003 and 0.02, and, for
x*¥ 2 3.1, between 0.05 and 0.1.

x*¥< 3]

e
1
A A

x¥*

For this calculation, separation occurred at the point x¥* = 5.1.
This corresponds to a center angle ® = 146.1°. For a circular cylinder
without suction, in contrast, H. Witting [19] found separation as early
as at x* = 3,80, that is, ¢ = 108.9°.

Figures 12 to 15 serve to illustrate the results.

Translated by Mary L. Mahler
National Aeronautics and Space Administration
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T] hl‘ = % hll hg’ - % h2| 71! = % 71_' 72l = 5721 751 = % 73
0 0 0 0 0 0
1 10000 10008 00001 .00000 00500
.2 20007 .20013 00013 .00000 02001
.3 30034 .30068 00067 .00000 .04506
A 40106 40213 00212 .00000 .08026
.5 50259 50520 00516 .00002 12578
.6 60536 61076 01061 .00007 18193
T 70988 71988 01947 .00025 24915
.8 8167k 83381 03277 .00071 32804
.9 92661 95394 05161 .00179 41937
1.0 1.04015 1.08181 07705 .00LOoL 52410
1.1 1.15810 1.21906 11004 .00840 64336
1.2 1.28116 1.36747 15137 .01622 77847
1.% 1.41001 1.52883 20162 .02941 93087
1.4 1.545%31 1.70501 26112 .05069 1.10217
1.5 1.68773 1.89788 32993 .08322 1.29406
1.6 1.83756 2.10934 4O787 .13100 1.50833
1.7 1.99549 2.34123 Lol53 .19864 1.74679
1.8 2.16180 2.59540 58937 .29123 2.0113%0
1.9 2.33%3678 2.87363 69174 Lak1g 2.30370
2.0 2.52066 3,17768 80096 57312 2.62582
2.1 2.71362 3.50927 .916L0 .77359 2.97948
2.2 2.91576 3, 87005 1.03750 1.02104 3, 36646
2.3 3,12716 4. 26166 1.16379 1.%2062 3,78850
2.4 3,34788 4.68571 1.29499 1.67717 L, 24735
2.5 3.57795 5.14377 1.43120 2.09522 4. 74468
2.6 3,81739 5.63T40 1.57154 2.57897 5.28221
2.7 4 .06621 6.16814 1.71615 3,13%239 5.86159
2.8 4. 32441 6.73752 1.86509 3, 75920 6.48449
2.9 4.59199 7.34705 2.01847 4. 46299 7.15257
3.0 L, 86897 7.99825 2.17627 5.24721 7.8674T
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TABLES OF THE FUNCTIONS hy', By', 71', 7,', 75' - Concluded

o R g R e gt [ =L [ T = | 75 =L s
3.1 5.15533 8.69262 2.33856 6.75936 8.63084
3,2 5.45109 9.43165 2.50542 7.07063 9.44433
3.3 5.75623 10.21685 2.67692 8.11634 10.30959
3.4 6.07076 11.04968 2.85318 9.25549 11.2282)4
3.5 6.39467 11.93166 3.03426 10.49157 12.20193
3.6 6.72898 12.86426 3.22028 11.82765 13.23229
3.7 7.07068 13.84896 3.41134 13.26687 14 ,32096
3.8 7.%2276 14.88724 3.60754 14 .81237 15.46958
3.9 7.7842L 15.98058 3.80898 16.46731 16.67977
4.0 8.15510 17.13046 4.01578 18.23482 17.95318
4.1 8.53535 18.33834 4. 22805 20.11787 1G.29142
4.2 8.92499 19.60571 4, 44588 22.11970 20.69615
4.3 9.3%2402 20.93404 4.66940 24 . 24337 22.16899
by 9.73244 22.32479 4,89872 26.49183% 23.71156
4.5 10.15025 23, 77944 5.13396 28.86825 25.32550
4.6 10.57745 25.29946 5.37522 31.37567 27.01244
.7 11.0140% 26.88631 5.62262 34.01707 28.77401
4.8 11.46001 28.54147 5.87628 36.79559 30.61184
4.9 11.91537 30.26640 6.13632 39. 71421 32.52756
5.0 12.38012 32.06257 6.40286 42.77598 34.52279
5.1 12.85427 3%3,93145 6.67600 45.98397 36.59918
5.2 13.33780 35.87449 6.95588 49.34105 38.75833
5.3 13.83072 37.89317 7.24262 52.85038 41.00189
5.4 14.33302 39.98895 7.53632 56.51492 43.33147
5.5 14.84472 42.16229 7.83825 60.32919 L5, 74825
5.6 15.36581 L 41767 8.1451L 64.32172 L8.25525
5.7 15.89628 46.7535% 8.46050 68.46992 50. 85269
5.8 16.43615 49.17236 8.783%0 72.78548 53.54268
5.9 16.98540 51.67560 9.113%69 77.27121 56.32683%
6.0 17.54404 54 .26473 9.45178 81.93026 59.20677
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APPENDIX IT

REMARKS CONCERNING H. GORTLER'S DIFFERENCE

METHOD IN THE CASE OF SUCTION

The method developed in the present report permits further calcula-
tion of a boundary-layer flow in spite of the influence of a discontinuity
of the value v(x,0) of the v-velocity component at the wall. TFor the
remaining flow regions with continuous v(x,0), one may then use without
difficulty one of the customary methods for boundary-layer calculation.
(See section 2.) In our examples - as far as no exact solutions were
available - we always used the difference method developed by H. G¥rtler
[ldl. For the flow without suction, consideration of the improvements
indicated by H. Witting [lél proved to be very favorable. These improve-
ments amount to a more exact treatment of the region near the wall and
produce, particularly in the proximity of the separation point, a sig-
nificant increase in accuracy. For the calculation of the flow with
suction, in contrast, use of those improvements is no longer profitable -
first, because they become then somewhat more troublesome, and second,
because in this case the original method of GSrtler works much more sat-
isfactorily, in the proximity of the wall as well. The reason for the
latter fact lies especially in that the u-velocity profiles have, in the
case of suction, a "fuller" form, that is, they correspond for instance
to velocity profiles without suction as appear far ahead of the separation
point.

In flows with suction, other small variations of GOrtler's difference
method, instead of Witting's improvements, have proved extraordinarily
favorable. We shall describe these variations below. We refer to the
original report guoted [;Q] and can therefore be brief.

In G8rtler's difference method the boundary-layer equations in their
dimensionless form

U Uy +V Uy = Up Up + Uyy
(1)
uy + vy = 0
with the boundary conditions
u(x,0) = v(x,0) = 0 u(x,o) = ugy(x) (1a)

which we change into
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u(x,0) = 0 v(x,0) = -vy(x) u(x,2) = uy(x) (1b)

are replaced by finite difference equations. For this purpose we intro-
duce, first, in the half plane y 20 a grid system

x5 + ih (1=0,1,...) (h > 0)
k1 (k=0,1,...) (1 >0)

X1
Yk

and write for abbreviation

uiy = u(xy,yx) vix = v{xi,¥x) (Uolth) 1 = Ue(x)ub(xy) (2)

GYrtler approximates the derivatives wuy, Uy, and Uyy by the finite
expressions

g
b=
|

I
§

™
=
R

Uy (%1,¥%) = a5 (we1,x - Y5 1,x) (3a)

;ﬂ
Ly
|
—

uy(x3,¥k) = =5 (91,k41 - ug,k-1) (x21) (3b)

n
o~
n
o~

o

K
uyy(xi,yk) = == Kli (V&,k+1 - Vi,k-1> (k 2 2)

"Iz (w1, k42 = 294 3 * Uy x-2)

These approximations by means of quotients of "alternating" differences
have, compared to those by means of the usual difference quotients, the
advantage of greater accuracy. On the other hand, they involve various
difficulties.

If the approximate equation (3a) is used, every two successive func-
tion values uyy and Ujyl,k  are connected only indirectly through the

differential equation. Thereby it becomes evident in the calculation
that the two sequences U_j, ks Ul,ks Uz, ks ¢ + - and Uo, k> U2,k

uy ks ocoe o have for constant k, a smooth course in every case, but

deviate more and more from each other, with increasing first subscript.
This "splitting-up" of the solution requires a consecutive smoothing of
the calculation results, We refer, for this, to the detailed considera-
tions in H. Witting [19]. This difficulty is eliminated to a great extent
if, instead of (3a), approximation by ordinary differences

ux(xi;Yk) = 9%5 = % (ui+l,k - uik) (3a%)
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is used. 1In so doing, one has to make allowance (for equal step interval)
for a slight increase in the rounding-off error; however - as H. Witting
shows in [ZOJ - this is amply compensated by an essential increase in
stability of the method with respect to small numerical disturbances. The
effect of this in the calculation is precisely a strong reduction of the
splitting-up mentioned sbove.

A further unfavorable consequence of the approximations (3) is that
they leave the derivatives

uy (x1,0) uyy (x1,0) uyy(x1,1) (%)

undetermined. This is not too bad for uy(x4,0) and uyy(xi,o) since

these values do not enter any farther into the present method. But, on
the other hand, one requires for uyy(xi,l) - because of the proximity

to the wall - a finite expression which must be more exact. For flows
without suction one has here the great advantage that on the basis of the
first wall restrictions

Uyy (x4,0) = -(ugud) 1
the derivative uyy(xi,0) 1s known. If we set therefore
2
vgo = )+7,2Uyy(xi,0) = <l (uoouc:))i

the missing second difference Vﬁl = hleuyy(xi,l) may now be obtained

for instance by cublc interpolation in the differences of the second
degree which leads to

11
% - B+ e - B

9713

Thus cne obtains finally also V., = 2Zuy(xi,0) from

Vip = iz - W1

For flows with suction the method for determining Vfl described
Just now is not applicable since the first wall restriction now reads

U.yy(Xi,O) = "(uoou-a!))i + uy(xi)O)ViO

thus the quantities on both sides are unknown. Therefore one would be

dependent on obtaining a finite expression for V%l by extrapolation;

however, it is hardly possible to attain a satisfactory accuracy. As
experience shows, a very widely varying quality of approximation has a
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much more unfavorable effect on a method than an approximation of lower
degree which is uniform throughout. Accordingly, it lends itself, simi-
larly to the procedure for uy, to approximate the derivatives Uyy also

by ordinary difference quotients

5 5 -5 1
uyy (x4,¥x) = —l“‘ = —11‘*1—11‘12 = S(ug,ke - 2ugk +up k1) (3e%)

(k 2 1) since thereby uyy(xi,l), too, is determined. This approximstion
formula (3c*) has still another advantage compared to (3c): (3c*) sig-
nifies geometrically for every x4y the approximation of the curvature

of the curve u(xj,yx) by means of the circle through the points Ui k+l,
Uiks Ui k-1s whereas in the case (3c) for the same problem the points

Ui k425 Uiko Ui kx-p 8re used which lie farther apart. For more pro-

nounced variations in curvature which still occur for instance at a con-
siderable distance behind the jumplike suction start, this has evidently
very unfavorable effects.

A perfectly analogous development of the difference method as indi-
cated by G¥rtler 1s now possible. For this purpose we evaluate first the
integral

Yy
v(x,y) = v(x,0) - fo ug(%,y) dy

which follows from the continuity equation for the velocity component v,
with consideration of the boundary conditions (1b) and the approximation
(3c*), with the aid of the trapezoidal rule

k-1

1
Vik = Vio - & 41k - ﬁ Z diy (5)

v=1

If (2), (3a*), (3b), (3c*), and (5) are then introduced into (1), there
results, for solution with respect to the unknown dix

k-1
2
2h(ueit) 1 + %hz' 81k + Vi agy - 2 vip

v=1
dix = - (6)
2 ujx - 5 Vik

For carrying out a calculation step - thus the numerical calculation
of the dix for constant 1 - one uses suitably for instance the
following scheme
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1=... h=... 2h(Ugud){ = « - - '%%o""
v @ |G| W (5) (6) (1) (8)
k-1
2 h
Yi | @ik | Vik | ®ik | 2uik-0-5Vix | = 7 Vio * }:div Yx [ Y4,k
v=1
h
0 -
0 7 Vio0 0 °
2 h
2 h

One calculates therefore first in every operation on the machine

(3) = Vi = Uy k41 = U4,k-1

"

2
(4) = 81k = Uy kel - 2 Ugk + U4 k-1

(5)

Nix = 2 uyg - O.5Vik

Then the two last columns may be filled in line by line. For every k,
one may obtailn the value

_(3)(6) + (2n/12) (1) + 2h(ueud)y
(5)

(7) = dyy

again in one operation. For performance of such a calculation step with
about 20 profile points yk, an experienced calculator requires approxi-
mately half an hour.

Regarding the step intervals h and 1 we have found by experience
that, for 2%, numerical values up to at most 1.0 are most favorable.
1

For g% > 1, in contrast, soon a certain accumulation of error becomes
1

noticeable for the values near the wall of djk. Small step intervals
1 require, therefore, also small h. As one soon finds out, a distinct
optimum exists for every example. A phenomenon of splitting-up of the
type described above will occur generally only to a very limited extent
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for wuyy, uyo, and possibly for Uy 3. For its elimination, the smoothing
rule given by H. Witting

d_'){k = 0.25 di+l,k - 0.5 444 +0.25 di-l,k (7)

is very useful. One first calculates (which requires little expenditure)
the three first values d1+1’k from the (1 + 1)th step, determines with
these the improved d?k according to (7) and repeats the same procedure

lteratively, if necessary. This smoothing of the d-values near the wall
may be performed mechanically perhaps at every third or fourth step and
produces then a very satisfactory variation of all sequences of values.

After the calculation has been carried out in the manner described
above, it remalns to calculate the values uy(xi,o) of the wall-shear

stress, not required until now. One may choose various methods. If only
a first survey 1s desired, one will put for instance

2
, Bip - &
uy(xi,0) = -iz—-il = % (u1z - 2ui2 + 2ui1)

A better finite expression is obtained, in a manner analogous to
H. Witting's, by means of the formulation

5
Bi0 = K81 + ) A, ujy ©3= - 412 (umudh) 1)
v=1

if the latter 1s expanded according to Taylor and the first two wall
restrictions

uyy(x,0) = - uwud - uy(x,0) vy(x)

Uyyy(%,0) = - uyy(x,0) vo(x)

are taken into consideration. By comparison of the coefficients, a system
of four linear equations for the six unknown coefficients originates. It
has proved expedient, because of the bad error propagation at the wall,
simply to put A; = Ao = 0, according to H. Witting's method. Then the

finite expression for 840 reads finally

840 = % [;(21150 + 9000 Vi)@i + 80000 ujz - 50625 uyy + 10368 u15]
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with
N = 89740 + 84600 T, + 36000 V5
and
vy = —Zvo(xi)

This corresponds, for ¥y = 0, exactly to the formula given by H. Witting
for the flow without suction.
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APPENDIX ITI
ON A GENERALIZED KIND OF ASYMPTOTIC SERIES

In section 5, an asymptotic series of the form

F(x) ~ i i amxk 1"y (1)

k=0 1=0

for x—- 0 occurred. We have still to show that one can calculate with
this series in exactly the same way as with ordinary asymptotic expan-
sions. Below, we shall produce this proof, but directly for the con-
siderably more general series of the form

for x - Xy with functions ¢n(x) corresponding to

Definition 1l: Let an infinite sequence of functions ®n(x) (n = 0,1,

2, . . .) Dbe prescribed, with the properties

(a) A11 9 (x) are continuous and different from zero in a half-
open interval J of the form x; S x< Xg or Xxg<x < X5 = for which

Xq = o also 1s permissible

(b) At the excluded boundary point x5 of J, let the limiting

value lim o,(x) exist for every n.
X - Xg; X€&J

(c) For all n there is always:

L-401
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Such & sequence of functions we shall call a ¢-sequence over J

with the limiting point xg, and denote it by {@n}J .
1 %0

A very simple example of such a d-sequence is formed by the functions

op(x) = x1 (n=0,1,2,...) (4)

for x- 0 where J 1is, for instance, the interval O < x < Xo. A
similar example is, of course, the case
0,(x) = 5 ( (5)
A(x) = = n=0,1,2,...) 5

Xn

for x »» in (O <)xl < x < w., The functions

o (x) = x* 1M (k=0,1,...; 1=0,1,...) (6)

occurring in the series (l), with n = (kgg + 1 likewise represent a

®d-sequence for x -0 in 0 < x % Xs-

In all d-sequences, there results from the properties (b) and (c)
immediately

lim @n(x) =0 (n=1,2,...) (xeJ) (7a)
P

whereas nothing is stated concerning the limiting value of ®O(x). In

what follows, we shall always assume

lim @O(x) £0 (xeJ) (7o)
X - Xq

This does not represent any restriction of the generality; if
1im ¢O(x) =0, we simply consider the ®-sequence in the extended
X = X

form ®O*(x) =1, @n*(x) = Qn_l(x) (n 2 1).

Furthermore, for every o&-sequence there applies the rule that any
finite number of its functions ¢n(x) are always linearly independent

in the entire interval J. Let us assume that there exists a relation
of the form
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Z ep0n(x) =0 Z |en] >0

finite number n
of n

in which for instance n; is to be the smallest subscript, with cnl £ 0.

Then we obtain, after division by ®nl(x) for x - x5, a contradiction

since the left side of the equation tends toward cp; # O, because of (3).

With any arbitrary ®-sequence, we can now form series of the form (2)
which we shall explain, in analogy to the ordinary asymptotic expansions,
as follows:

Definition 2: Let {§H}J be a ¢-sequence. A series of the form
s %0

which need nowhere converge is called an asymptotic

OMB

sequence for x - X0 (er) of the function F(x) defined in J when

for every m

lim  [F(x) - z oy 0n(x) %) -0 (8)
X - XO n=0 (Dm X

xed

For this we write abbreviately

o0

F(x) ~ Z 8 0_(x) (9)

n=0

Corresponding to our above examples, this definition contains the
ordinary asymptotic series and alsoc the expansion (1) as special cases.

On the basis of our assumption (7b) made for all ¢-sequences, one
may assume, in every d-series, ®o(x) =1 as normalized. This signifies

only a transition to the ¢-expansion

00

F(x),v }: a0 *(x)

T
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with the ¢-sequence

2
o % = =

n
@
0 J,XO

We must now investigate how we may calculate with the general asymptotic

¢-series. The O®-sequence used, {?n I , Wwill be assumed to be always
» X0

the same and a priori fixed so that all occurring arguments x 1lie in

the same interval J and all limiting processes x — X5 are referred

to the same XQ -

First of all we find

Theorem 1: A function F(x) defined in J can be represented for
X = Xq by at most one asymptotic ¢-series.

Proof: From (8) there follows immediately

lim }Z a, 0, (x) . a, (m=0,1,...) (10)
X - X 0 ()
that is ]
lim —Eiil = ag

X - Xq b (x)

lim F(x) - and (x)) L .a
X - Xg ( N 3 (11)
1
lim F(x) - a X) - a X =
N (x) - ag2o(x) - a0, (x)) 5 85

Only when all these boundary values exist, F(x) has, for x - Xgs 8

d-series over J, and thls series is then uniquely determined.

Theorem 2: Assume that it is possible to represent the functions F(x)

and G(x) by the ¢-series
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e} 00

F(x) ~ Z 8,0 () a(x) ~ Z b0 () (12)

n=0 n=0

Then, with arbitrary constants a,p the linear combination oF(x) + BG(x)
also has, for x - xg, a ¢-series over J, namely

o0

WF(x) + p00) ~ ) (amy + Bop)ay(x) (13)
n=0

Proof: From the boundary values valid for every m

M m 1 N
Xli?xo F(x) - 2; an®n(x) ey =0
L n=
— 0 —
1lim G6(x) - Z by ®n(x) ](‘ ) =0
X = X o (x
0 | n=0 ] m

follows directly by multiplication by a and B and following addition
the assertion

1im (aF(x) + pa(x)) - aan + Bby)o,(x) =0
X = Xq gi; ( ) ()

The multiplication of ¢-series requires a further presupposition
which guarantees that the range of the functions @¢,(x) is closed with

respect to the product formation. More accurately we say

Definition 3: A ¢-sequence {?n} 3 will be called multiplicative
»%0

when for every pair of subscripts k,l exactly a subscript n = n(k,1)

exists so that in the entire J

¢k(x)®l(x) = ¢n(x)
is wvalid. |

The d¢-sequences (4), (5), and (6) of our three examples are evidently
all multiplicative.

L-4%01
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If an arbitrary multiplicative ¢-sequence 1is prescribed, a mul-
tiplication table for it may be set up in a known manner. For our
example (6), this table starts for instance with

o 03 & % 7
@2 @u ®5 @7 @8

@5 @6 @7 ¢lo @ll .

oy &7 o8 bt o0

In a single line or column of such a multiplication table, every
®,-funtion may, of course, appear only once at most. However, no

statement is yet made regarding the question, how many times this &,

for fixed n occurs in the table altogether. Such a statement is con-
tained only in the following

Auxiliary theorem 1: In a muitiplicative d-sequence {@n} 3 there
» %0

applies for the subscript n = n(k,l) of the product &, = o dy of any
two functions &, and &, always

n(k,1) 2k + 1 (14)

Proof: The assertion of the theorem signifies that for fixed n the
function ¢, in the multiplication table of the sequence can never

appear outside the triangle shown.

dn
In order to understand this, we consider first for fixed k two products

Q

k¢1 =9 6.0 =2

1 M k'l  np
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If for them 1 < o, applies, there must also always be ny < ny. This

follows from

thus
%, n,
o O
. m

If n, <.nl is assumed, the left side of this equation tends toward
zero for x - x, (xed) Dbecause of the property (c) of the d-sequences;

the right side, in contrast, tends toward infinity, for the same reason.
The case n, =n, likewise results in a contradiction since then the

right side is constant 1.

Let us now assume - for proof of the theorem itself - that a4 pro-
duct Px®; = &, with k + 1 > n exists. This product then lies in

the multiplication table outside the triaﬂéle drawn above. On the line
of ¢y there exist, up to the ®n, exactly 1-1 intermediate places.

Corresponding to our auxiliary consideration, however, only the n - k - 1
(<1 -1) functions Quits - - ®,_1 can be at these places.

This is a contradiction; therefore, (14) must always be correct.

From the theorem just proved it follows that, for every fixed n,
the number p = p(n) of the products ¢ 0, = & can be at most n + 1.

We order these p products in the sequence

o) .« e o)
<]>kl Zl’ ) okp Zp

with 0 =k <k, <...< kpo1<ky=n and 0<1¢<n-k, (v=1,
. ¢+ ., D). We assume the pairs of subscripts (kv,lv) in our prescribed

¢-sequence as once for all determined from the multiplication table for
every n.

Now applies

Theorem 3: Assume it possible to represent the functions F(x) and
G(x) for x - Xy by the ¢-series (12) whose ¢-sequence {@n}
J J:XO

is multiplicative. Then the product F(x)G(x), too, has for x -» X0
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a ¢-series over J, namely
F()G(x) ~ Z c o (x)
n=0

With the pairs of subscripts (kl,ll), . - ey (kp(n)’lp(n» introduced

above one has here

ey = akl'bll + oo+ akp(n)blp(n) (15)

Proof: According to the definition of the p-series we may set for
fixed m
m
F(x) ~ }: an¢n(x) + g(x)@m(x)
n=0

m

G(x) ~ 2 bndn(x) + n(x)om(x)
n=0

where g(x) and q(x) are certain functions over J which, for
X = Xg, tend toward zero. We now multiply these two finite sums and

then order according to the &p. This results in

M m
F(x)G(x) = z cn*on(x) + z [ann(x) + bne_(x] .
n=0 n=0
where M > 2m is a certain fixed number and where the cg¥, c¥*, o - -

Cp* evidently must be exactly equal to the corresponding cp according

to (15). Thus the above equation becomes

ue M o (x)
F(x)G(x) - cn¢n(x) 1 . c * n +
nzé ¢n(x) n;&l ()

ii [énq(x) + bng(xﬁ o, (x)
n=0
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that is, because of (3) and 1lim e(x) = 1lim 1(x) = 0, directly,

X = Xg - X = Xq
as asserted
m
lim  |[F(x)G(x) - Z endn(x)| —— = 0
X = X = ¢m(x)

By repeated application of the theorems 2 and 3 there follows
immediately

Theorem L4: If each of the functions Fy(x), Fo(x), . . ., F (x) has
for x o Xo, an asymptotic ¢-expansion whose ¢~-sequence {¢n} is
J,x
C
multiplicative, and if g(zl, ey zs) signifies any polynomial of

the variable 215 « « « , Zg, the function
F(x) = g(Fi(x), Fo(x), . . ., Fg(x))

also has, for x - Xp, an asymptotic &-series over J. This series is

obtained - exactly as if all expansions were absolutely convergent - by
formal calculation and following reordering according to the functions
-

Beyond this, there applies now even the following:
00

Theorem 5: If g(z) = E: auz“ is a power series with the positive

=0
convergence radius r, and if F(x) has the asymptotic ¢-expansion

=]

F(x) ~ Z a0 (x) (x - xg)
n=0

where d(x) =1 and |a0| < r, the function

G(x) = g(F(x)) (16)

too, may be represented for x — Xg» by an asymptotic ¢-series. This

[>+]

series is again calculated exactly as if the series }: an¢n(x) were

n=0
convergent in J.
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Proof: With F(x) = a

g(F) = glag + £) = z B L (17)

if one puts for abbreviation

1 ,(k)
According to assumption, this series converges for |f(x)| <r - laol,
thus because of lim f(x) =0 for all x from a half-open interval

X-—)XO
J¥ explained by xeJ, |x - XOI < ® with sufficiently small & > O.

Thereby the function G(x) 1is with certainty defined in J¥.

On the basis of theorem 4, there now follow from

f(x) ~ }: a0, (x) (18)

n=1L

immediately the ¢-expansions

(£(x)) " ~ z an(E) o (%) (k=2,3,...) (19)

The coefficients an(k) have well-determined values to be calculated

according to our rules regarding the product-formation of asymptotic
¢-expansions - thus as for absolute convergence of (18). On the basis

of the auxiliary theorem 1, the series (19) can of course, for (£(x))k,

start at the earliest with the term ak(k)®k(x).

The expansions (19) must now be substituted into (17) and the
obtained expression must be reordered formally - that is, agaln, as if
the series (19) were absolutely convergent - according to the func-
tions ¢,. One then obtains an expansion

Z Ao (x) (20)
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for which the coefficients can be calculated from
AO = BO
(21)

A, = Bja, + Bgan(g) + .+ Bnan(n) (n21)

It remains to be shown that (20) is the asymptotic ¢-series of G(x)
for x - xy over J*. For this purpose we use for f(x), (£(x))2,
(£(x))™, for fixed m, the defining representations pertaining to (19)

(£(x))¥ = z a (o (x) + g(x) (%)
n=k

with certain functions ¢€y(x) for which lim glx) =0 (k =1,

X = Xg
, m) 1is valid. Thereby (17) becomes

G(x) = Bo + By Z an<1>n(x) + g (e (x| + ... + Bm(am(m)om(x) +
n=1
en(0)0,(x) + £ Z By
u=1

thus, with consideration of (21)

6(x) - Z A0(0) = 0,00 [Bre1 (3) + -+ Bren(d] +
n=0

1 vl
91 gt

u=1

Since one must have, because of (19) and (3)

Lig  Een™h

X - Xg ¢m(X)
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and moreover evidently

lim  Beyx) + ...+ poe(x) =0
X = XO

o]

lim Z Bm_uf“ = By

X - X
00

are valid, the assertion follows.

An important special case of this theorem is obtained for

1 1 = n/z \B
E(Z) = %—4-_2 = ;g Z (-l) (;(;) (ao 7! 0)
n=0

if for 2z the asymptotic ¢-series
£(x) = F(x) - ag ~ Z a 0, (x)

n=1

is substituted. Then the theorem states precisely that we may also
divide by an asymptotic &-expansion, exactly as if it were absolutely
convergent, if only the constant term is aq # 0.

Now we shall turn to the question under what conditions one can
calculate from the ¢-series of a (continuous) function F(x) a like-
wise contlnuous expansion for the integral

6(x) = f F(¢) at (xed)

For this, it will certainly be required that - similarly to the case of
multiplication - the integrations

f o () at (xeq)  (22)
X0

can always be carried out and do not lead out of the ®-sequence used.
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The existence of (22) is, for finite Xg, always guaranteed on the

basis of the properties of the ¢-functions for all xeJ and every n 2 O.
For xg = %o, in contrast, those integrals are improper and possibly in

part even divergent - as shown by the example of the normalized ¢O(x) = 1.

In this case we know generally merely: when (22) converges for a sub-
script n =M, this 1s necessarily valid also for all n 2 M. This
follows directly with the aid of the knowm majorant principle of improper
integrals if one only takes into consideration that from (3) for every

n 2 M dissimilar terms of the form

[0,09] 5 ey ||
*
may be derived, with a constant c y valid in the entire J.

In order to be able to make a rational assumption regarding the
result of the integrations (22), we consider first our three examples (4),

(5), and (6). For (4) and (6)

b'e Xn+l
f gfae = : (23)
0

n+ 1

is valid or, respectively,

* x .k
f eF 1nfle qe =
0

k-1
Z (-1)" (e -2 -2 =10 (k-2 - (W = V) ke ) k-lopy (24)
1

=0 (k + 1)

In contrast, we find for (5), for n 2 2,

f R L S— (25)
X

(n - 1)x2-1

o [e9]
whereas the two integrals /P d¢ or b/\ g'ldg do not exist at all.
Y x b'd

In the two formulas (23) and (24) it is noteworthy that on the right
side only ®-functions having a larger subscript than the integrand occur.

*Here we tacitly made use of the fact that the Qn(x) in J are

all different from zero and that, therefore, in the entire J either
always ‘¢n(x)| = o,(x) or ‘¢n(x)| = -0 (x).
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This is a result valid generally for Xxg # tw, Let us assume, for a

finite Xq and an arbitrary fixed n

j(n)

fx: on(elat = Z Cy 8, (%) (26)

p:n—N

with N> 0 (that is, n> 0). Then the integral may be replaced, as
is well known, by

[ eal)ar = (e - x0) (27)
X0

where x* represents an intermediate value in the integration interval.
Hence follows

f‘ o, (E)at .
lim —Q - 1im (<) (x - x9) =0
X - X @n(x) X = X Qn(x)

whereas for the right side of (26), because of (3),

3(n)
Canu(X) J(n)
o (x)
1im b=l = cp, lim Y«
X = X0 Qn(x) X = Xg ¢n(X)

u:n—N

is valid. This is a contradiction as long as we do not set N = 0. For
Xg =*e this result cannot be correct, of course, as shown by (25),

because then the mean-value theorem (27) loses its validity.
Corresponding to what has been sald until now, we shall agree:
Definition 4: Let {@n} be a d-sequence with the boundary

J,%o
point Xxg. We denote by M the smallest subscript for which the integral

x
JF @n(g)dg in J exists. For finite xg,, there must always be M = O;

XO
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for x5 =21, let us assume the existence of a finite M. Then the

¢-sequence will be called integrable when for all subscripts n 2 M in
the entire J

J(u)

ey(E)de = Cnu®, (x) (28)
ujilM

X
X0

is valid, with finite swmmation limits j(n) and certain coefficients
Cnps uniquely determined because of the linear independence of the ®u.

Accordirgly, all three examples (4), (5), and (6) are, of course,
integrable Jd-seyuences.

We can now show:

Theorem b: Let us assume that the function F(x), continuous in J,
can be represented, for x o Xa» by the O®-series

F(x) ~ i a,®,(x) (29)
n=0

with the ¢-sequence {¢n} 7, % assumed to be integrable. Then the
k4

function

M-1

G(x) \/px F(e) - ad,(e)]de (30)

also defined In J and has there for x — Xy an asymptotic d-series

o

G(x) ~ Ez Ao, (x) (31)
n=0

[o.0]

The coefficients A, are obtained from the ¢-expansion E; andn(x) of
=

the integrand of (30) by term-by-term integration and following reordering

with respect to the ¢n, exactly as if (29) were absolutely convergent.

L-401
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Proof: The existence of the function G(x) in J follows, for
finite X0» directly from the continuity of F(x). For Xy = teo, in

contrast, it results, again with the aid of the majorant principle,
from the dissimilar terms

M-1
F(x) - EE: an®n(x)i = ](aM + gM(xD ®M(x)‘ < CM|®M(X4
n=0 !

X
since b/\ ¢M(g)d§ was to converge.
%0

We now use for (29) the representation

M-1 M+m
PO - ) entn(x) = ) endn(x) + g00ay () (32)
n=0 n=|

with arbitrary but fixed m and a function g(x) defined in J which
for x - x5 tends toward zero. Thereby G(x) becomes

Mtm J(n) N
GG = ) m ) et ¢ [ eaga(ta
n=M p=n-M X0
thus after reordering
3 (Msm) x
G0 = ) agreg(x) + [ oo
n=0 Y
Evidently the coefficients AO*, .« « , Ap* must now be exactly equal

to the corresponding A, from (31) since they can no longer be affected

by any term of the series (29) with a subscript larger than m + M.
Thereby one has

m J(mn)

I N P D L et el LWL

n=0 n=m+1 ¢m(x) ®m(x)
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If we now take into’ consideration that |g(§)| according to (32) and
1im  €(g) = O in the integration interval of x5 to x certainly
£ - X

0
has a finite maximum @&(x), there follows
J(m+M)
X " o, (x)
% f g(g)cme(g)dgi < &(x) Z cmM,ul a
¢m X) xo I som ]q’m(x)

m

Hence we obtain, because of (3) and 1lim (x) = 0 that the integral

X = Xg
for x - X disappears on the right side of (35). Since, moreover, the
remaining sum, on the basis of (3), also tends toward zero for x - X0
the proof of the theorem 1s completed.

Thus we may integrate asymptotic ¢-series always term by term. The
inversion, in contrast, therefore the term-by-term differentiation, does
not lead in every case to a correct result. For instance the function

F(x) = e~Xsin(eX) has, for x — o, an asymptotic series of the form

0,0
0+ " + 2 + .
Its derivative F'(x) = -e Xsin(e¥X) + cos(e¥), however, oscillates for

the approach of x to infinity and permits, therefore, certainly no
such expansion.

In order to arrive at a general theorem alsc for the differentiation
of ¢-series, one must always assume that not only the function F(x)
but also its derivative F'(x) has an asymptotic ¢-expansion. Further-
more, we shall of course have to require that all derivatives On‘(x)

exlst in J and again can be represented only as linear combinations
of the functions 0n(x). These relations between the ¢,' and the ¢

are rather fixed by definition 4: If the considered ®-sequence

n

Qﬁ} is integrable, there follows for it from (28)
J,xo
J(n)
(%) = z Cnudy ' (%) (n 2 M,xeJ)  (3h)
p:n-M

We shall here not investigate in more detail how far this infinite system
of equations always has an inversion by which every derivative 0n'(x)

L-%01
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is represented as a homogeneous linear combination of a finite number
of 0“(x). However, insofar as such a representation

n

o =) a6 @zoxa) ()

Finite number
of u

exists for all n, it is, at first, certainly uniquely determined -
because of the linear independence of the @ (x) - and represents then

moreover, for the same reason, also a solution of (34).

Likewise, we shall here not treat the question of what subscripts p
can appear in (35), but shall only agree upon the following:

Definition 5: An integrable ¢-sequence {@n} I,% is to be called
2

differentiable, if, first, all its functions Qn(x) in the entire J
are continuously differentiasble and, second, the infinite system of

equations (34) following from (28) has an inversion of the form (35)
which is then, of course, uniquely determined.

Evidently our three examples (4), (5), and (6) all represent differ-
entiable &-sequences. For (4) and (5) this is perfectly clear, for (6)
it follows from

L (apkety) = dodlinkTep (e-0)hink ol

Now we can show:

Theorem 7: The function F(x), continuously differentisble in J may
be represented for x - X5 by the asymptotic ¢-expansion

o

F(x) ~ 2 a0 (x) (36)
n=0
where the ®-sequence {on} 5 is differentisble in J. If then F'(x)
»¥0

also has, for x - X5, an asymptotic ¢-series in J, the latter results

from (36) by term-by-term differentiation and subsequent reordering
sccording to the &j.
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Proof: Let the ¢-series of F'(x) existing according to assumption
read, for instance

00

F'(x) ~ by &, (%) (37)
4

We assume first that Xg is finite. Then there follows by integration
of (37) according to theorem 6

oo

X

F(0) = ag+ [ F(e)ag ~ (sg + B) + ) Bat(x) (38)
0 n=1

with the coefficients B, originating by term—by;term integration of

(37) and subsequent reordering; for simplification, we put @5(x) = 1.

However, since - because of theorem 1 - a function uniquely determines
its asymptotic series, there must, on the other hand,

By =0, B, =a, (n 2 1)

be valid. That 1s, we obtain from the expansion (37) of F'(x) by
term-by-term integration and subsequent reordering precisely the ®-series
(36) of F(x). On the basis of the differentiability of the ®-sequence
according to definition 5, this process may be directly performed also

in the inverse direction. If, therefore, (36) is differentiated term

by term and subsequently reordered, (37) must, again, always be the
result. This precisely was the assertion.

Let now Xg be tew. Then one has with two finite values X,x, e

X
F(x) = cl+f Fr(g)at
X1
M-1 x x | M-1
=cy + Z bnf o,(e)de +f F(e) - Z b, o, (8)] at
n=0 xl xl n=0
or
M-1 x M-1
F(x) = o +2 bt() + [ e - Z b (e at (39)

n=0 0 n=0

L-401
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Ed

where for abbreviation,

¥, (x) =f o, (g)ae
X1

On the basis of the assumption regarding M, these integrals are at any
rate divergent in the limiting process x; — Xg = tw, that 1s, the

boundary values lim wn(x) do not exist. On the other hand, there
X—)XO
follows with the aid of theorem 2, because in (39) F(x) as well as

the integral on the right side possess asymptotic expansions for x - xg
M-1

that bnwn(x) also may be represented by such a series for x - Xq -
n=0

This is a contradiction, unless by =Dby = «s. =Dby ; =0, that is,

M-1

}; bnwn(x) =0 1is valid. Now, however, one may draw a conclusion

n=0

again in exactly the same manner as in the case of the finite X

whereby the theorem may be regarded as proved.
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Figure 9(a). - Section from figure 9: A few velocity profiles within the

region of suction.
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